Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

Pyrophosphate Selective Recognition by a Zn²⁺ Complex of a 2,2'-Binaphthalene Derivative Bearing Di(2-pyridylmethyl)aminomethyl Groups in Aqueous Solution

Shin-ichi Kondo,*^{1,2} Yasunori Nakadai³ and Masafumi Unno*³

¹Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan

²Institute for Regional Innovation, Yamagata University, Kanakame, Kaminoyama, Yamagata 999-3101, Japan

³Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan

Tel and Fax: +81-23-628-4587

e-mail: kondo@sci.kj.yamagata-u.ac.jp

Contents

Fig. S1. 500 MHz ¹ H NMR spectrum of receptor 1 in CDCl ₃
Fig. S2. 126 MHz ¹³ C NMR spectrum of receptor 1 in CDCl ₃ ······ S2
Fig. S3. UV-vis spectral titration of 1 with Zn(NO ₃) ₂ in 20% MeCN–10 mM HEPES-NaOH (pH 7.2)
at 298 K · · · · · · · · S3
Fig. S4. UV-vis spectral titration of 1 with Zn(NO ₃) ₂ in 20% MeCN–10 mM MES-NaOH (pH 5.6) at
298 K······S3
Fig. S5. Fluorescence spectral titration of 1 with Zn(NO ₃) ₂ in 20% MeCN–10 mM MES-NaOH (pH
5.6) at 298 K ······ S4
Fig. S6. Fluorescence spectral titration of 1 with Zn(NO ₃) ₂ in 20% MeCN-10 mM HEPES-NaOH
(pH 7.2) at 298 K · · · · · · · · S5
Fig. S7. pH dependence on UV-vis spectra of 1 in 20% MeCN–buffer solutionS5
NMR titration of 1 with Zn(NO ₃) ₂ ·6H ₂ O in DMSO-d ₆ ······S6
Fig. S8. ¹ H NMR spectra of 1 in the presence of $Zn(NO_3)_2 \cdot 6H_2O$ in DMSO- $d_6 \cdot \cdots S6$
Preparation of 1·2[Zn(NO ₃) ₂]·H ₂ O·····S7
Fig. S9. ¹ H NMR spectrum of $1 \cdot 2[Zn(NO_3)_2]$ in DMSO- $d_6 \cdots$ S7
Fig. S10. UV-vis spectral changes of $1.2Zn^{2+}$ upon the addition of anions in 20% MeCN-MES buffer
(10 mM, pH 5.6) at 298 K ····· S8
Fig. S11. Job plot analysis for complexation of $1.2Zn^{2+}$ with $H_2P_2O_7^{2-}$ by UV-vis spectroscopy in
20% MeCN-MES buffer (10 mM, pH 5.6) at 298 K
Fig. S12. Fluorescence spectral changes of $1.2Zn^{2+}$ upon the addition of anions in 20% MeCN-MES
buffer (10 mM, pH 5.6) at 298 K S10
Fig. S13. UV-vis spectral changes of $1.2Zn^{2+}$ upon the addition of $H_2P_2O_7^{2-}$ in 20% MeCN-MES
buffer (10 mM, pH 5.6) in the presence of anions ······S11

Fig. S1. 500 MHz ¹H NMR spectrum of receptor 1 in CDCl₃.

Fig. S2. 126 MHz ¹³C NMR spectrum of receptor 1 in CDCl₃.

Fig. S3. UV-vis spectral titration of 1 with $Zn(NO_3)_2$ in 20% MeCN–10 mM HEPES-NaOH (pH 7.2) at 298 K. [1] = 2.0×10^{-5} mol dm⁻³. $K_{11} > 10^7$ and $K_{12} = 2.93 \pm 0.04 \times 10^6$ mol⁻¹ dm³.

Fig. S4. UV-vis spectral titration of 1 with $Zn(NO_3)_2$ in 20% MeCN–10 mM MES-NaOH (pH 5.6) at 298 K. [1] = 2.0×10^{-5} mol dm⁻³. $K_{11} > 10^7$ and $K_{12} = 7.25 \pm 1.54 \times 10^4$ mol⁻¹ dm³.

Fig. S5. (A) Fluorescence spectral titration of 1 with $Zn(NO_3)_2$ in 20% MeCN–10 mM MES-NaOH (pH 5.6) at 298 K. [1] = 1.0×10^{-5} mol dm⁻³ and $\lambda_{ex} = 296$ nm. $K_{11} > 10^7$ and $K_{12} = 3.15 \pm 0.05 \times 10^4$ mol⁻¹ dm³. (B) Change of fluorescence intensity of 1 at 380 nm and the curve fitting analysis of the titration data. (C) Simulated spectra of 1, $1 \cdot Zn^{2+}$, and $1 \cdot 2Zn^{2+}$ from the curve fitting analysis of the titration of 1 with $Zn(NO_3)_2$.

Fig. S6. Fluorescence spectral titration of 1 with $Zn(NO_3)_2$ in 20% MeCN–10 mM HEPES-NaOH (pH 7.2) at 298 K. [1] = 1.0×10^{-5} mol dm⁻³ and $\lambda_{ex} = 296$ nm. $K_{11} = 5.39 \pm 1.70 \times 10^{6}$ and $K_{12} = 2.43 \pm 0.54 \times 10^{6}$ mol⁻¹ dm³.

Fig. S7. pH dependence on UV-vis spectra of 1 in 20% MeCN–buffer solution. $[1] = 2.0 \times 10^{-5}$ mol dm⁻³.

NMR titration of 1 with Zn(NO₃)₂·6H₂O in DMSO-d₆

Into a NMR tube, 600 μ l of a solution of **1** (4×10⁻³ mol dm⁻³) in DMSO-*d*₆ was added and ¹H NMR was measure. Into the solution, aliquots of a the stock solution of Zn(NO₃)₂·6H₂O (1.09×10⁻¹ mol dm⁻³) in DMSO-*d*₆ were repeatedly added and spectra were recorded. The titration result is shown in Fig. S8.

Fig. S8. ¹H NMR spectra of **1** in the absence (a) and presence of 0.5 (b), 1.0 (c), 1.5 (d), 2.0 (e), 2.5 (f), 3.0 (g), 3.5 (h), 4.0 (i), 4.5 (j), 5.0 (k), and 5.5 equiv (l) of $Zn(NO_3)_2 \cdot 6H_2O$ in DMSO-*d*₆ at 298 K. [**1**] = 4×10^{-3} mol dm⁻³.

Preparation of 1·2[Zn(NO₃)₂]·H₂O

Into a solution of **1** (20 mg, 0.031 mmol) in 5 ml of acetonitrile, was added a solution of $Zn(NO_3)_2 \cdot 6H_2O$ (18 mg, 0.061 mmol) in 3 ml of acetonitrile. The solution was stirred for 30 min and evaporated under reduced pressure. The residue was washed with MeOH and the precipitates were collected. The pale yellow powder was dried in vacuo to give the product. Yield 20 mg, 62%. ¹H NMR of the product in DMSO-*d*₆ showed complicated mixture of **1**, **1** · [Zn(NO₃)₂], and **1** · 2[Zn(NO₃)₂] due to partial dissociation Zn²⁺ in DMSO solution as shown in Fig. S9c. The spectrum is similar to the 1:2 mixture of **1** and Zn(NO₃)₂·6H₂O in DMSO-*d*₆. Elemental analysis; Found C, 51.71; H, 4.01; N, 13.03. Calcd for C₄₆H₄₀N₁₀O₁₂Zn₂·H₂O: C, 51.46; H, 3.94; N, 13.05%.

In the presence of excess $Zn(NO_3)_2 \cdot 6H_2O$, $1 \cdot 2[Zn(NO_3)_2]$ was predominantly formed and ¹H NMR is reported as follows (Fig. S9). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.70 (d, 4H, *J* = 4.7 Hz), 8.15 (d, 4H, *J* = 8.0 Hz), 8.10 (d, 4H, *J* = 8.6 Hz), 7.89 (s, 2H), 7.75–7.80 (m, 6H), 7.72 (t, 4H, *J* = 8.0 Hz), 7.61–7.62 (m, 6H), 7.33 (d, 4H, *J* = 8.1 Hz), 4.41 (s, 4H), 4.29 (d, 4H, *J* = 16.0 Hz), 3.81 (d, 4H, *J* = 16.0 Hz).

Fig. S9. ¹H NMR spectra of **1** in the presence of 2.0 equiv (a) and excess (c) of $Zn(NO_3)_2 \cdot 6H_2O$ in DMSO-*d*₆ at 298 K. (b) ¹H NMR spectrum of $1 \cdot 2[Zn(NO_3)_2]$ in DMSO-*d*₆ at 298 K.

Fig. S10. UV-vis spectral changes of $1.2Zn^{2+}$ upon the addition of anions in 20% MeCN-MES buffer (10 mM, pH 5.6) at 298 K. $[1.2Zn^{2+}] = 2.0 \times 10^{-5}$ mol dm⁻³, AcO⁻ (a), HPO₄²⁻ (b), H₂P₂O₇²⁻ (c), NO₃⁻ (d), ClO₄⁻ (e), and Cl⁻ (f).

Fig. S11. Job plot analysis for complexation of $1 \cdot 2Zn^{2+}$ with $H_2P_2O_7^{2-}$ by UV-vis spectroscopy in 20% MeCN-MES buffer (10 mM, pH 5.6) at 298 K. $[1 \cdot 2Zn^{2+}]+[H_2P_2O_7^{2-}] = 2.0 \times 10^{-5}$ mol dm⁻³.

Fig. S12. Fluorescence spectral changes of $1.2Zn^{2+}$ upon the addition of anions in 20% MeCN-MES buffer (10 mM, pH 5.6) at 298 K. $[1.2Zn^{2+}] = 2.0 \times 10^{-5}$ mol dm⁻³, $\lambda_{ex} = 296$ nm, AcO⁻ (a), HPO₄²⁻ (b), H₂P₂O₇²⁻ (c), NO₃⁻ (d), ClO₄⁻ (e), Cl⁻ (f).

Fig. S13. UV-vis spectral changes of $1.2Zn^{2+}$ upon the addition of $H_2P_2O_7^{2-}$ in 20% MeCN-MES buffer (10 mM, pH 5.6) in the presence of $H_2PO_4^-$ (1.0×10^{-4} mol dm⁻³, A), AcO⁻ (1.0×10^{-4} mol dm⁻³, B), and Cl⁻ (1.0×10^{-1} mol dm⁻³, C) at 298 K. (D) The absorbance changes at 310 nm of **1** upon the addition of $H_2P_2O_7^{2-}$ in 20% MeCN-MES buffer (10 mM, pH 5.6) at 298 K. in the absence of anion (\blacklozenge) and in the presence of $H_2PO_4^-$ (\blacksquare), AcO⁻ (\blacklozenge), and Cl⁻ (\bigstar). [$1.2Zn^{2+}$] = 2.0×10^{-5} mol dm⁻³.