Preparation and utility of self-lubricating & anti-wear graphene oxide/nano-polytetrafluoroethylene Hybrid

Ting Huang^a, Tongsheng Li^{a*}, Yuanshi Xin^a, Bocheng Jin^b, Zhongxin Chen^a, Chao Su^a,

Haiming Chen^a and Steven Nutt^b

^aState Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China and ^bDepartment of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089-0214, United States.

Supplementary data

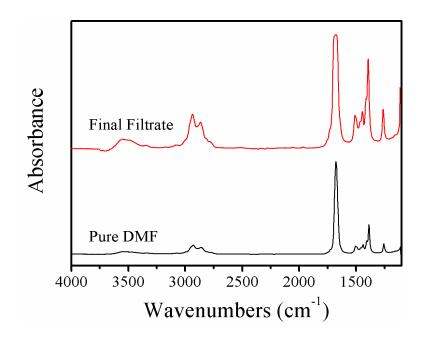
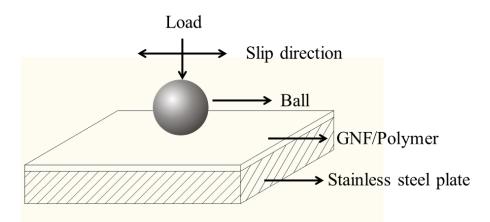



Figure S1 FTIR spectra of Final filtrate and pure DMF, respectively.

The specimen for a reciprocating friction and wear test

Figure S2 Schematic of the contact configuration of the reciprocating friction and wear testing machine.

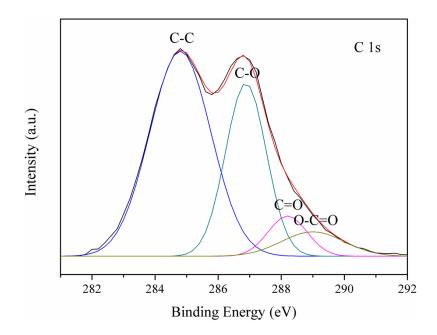
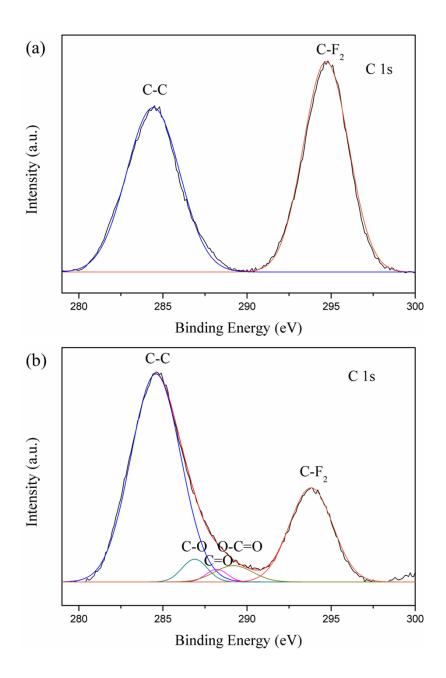
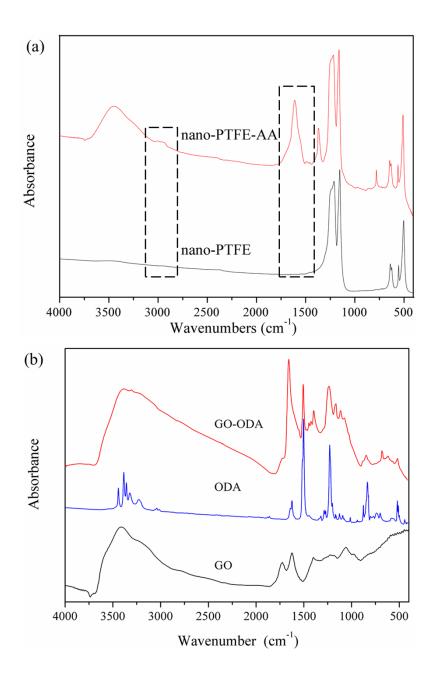
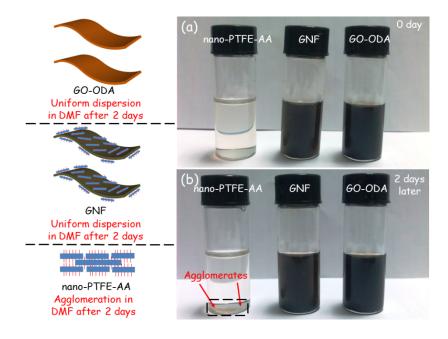
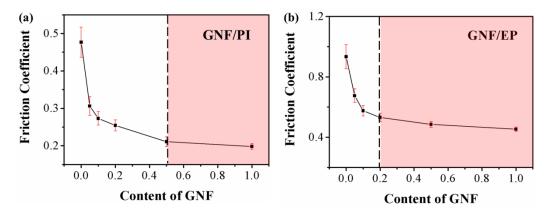


Figure S3 C 1s XPS spectrum of GO.


Figure S4 C 1s XPS spectra of nano-PTFE and nano-PTFE-AA.

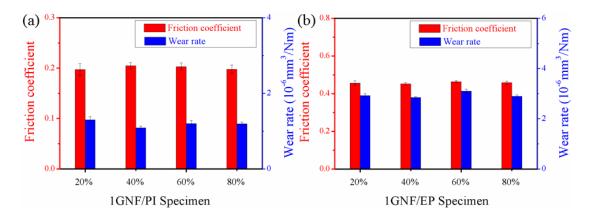

Figure S5 (a) FTIR spectra of nano-PTFE and nano-PTFE-AA; (b) FTIR spectra of GO, ODA and GO-ODA.

Figure S6 The dispersibility and time-dependent stability of nano-PTFE-AA, GNF, GO-ODA in DMF solvent

Figure S7 Relationship of average friction coefficient values for the (a) GNF/PI and (b) GNF/EP specimens with GNF content. (reciprocating frequency: 10 Hz, sliding distance: 480 m, load: 10 N, RH: 40%)

Figure S8 (a) Friction coefficient and wear rate of 1GNF/PI and 1GNF/EP specimens under various RH conditions.

Figure S9 Appearance for dog-bone type specimens of (a) neat PI and GNF/PI, (b) neat EP and GNF/EP composite films.

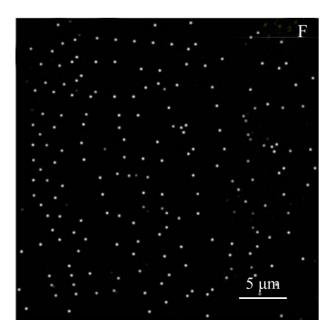


Figure S10 EDX elemental mapping of F dispersion on the counterpart.

Specimens	Friction coefficient	Wear rate (mm ³ /Nm)
neat PI	0.477	1.56×10^{-4}
1nano-PTFE-AA/PI	0.285	8.96×10^{-5}
1GO-ODA/PI	0.403	1.94×10^{-5}
1GNF/PI	0.198	1.09×10^{-6}
neat EP	0.934	2.83×10^{-4}
1nano-PTFE-AA/EP	0.677	1.72×10^{-4}
1GO-ODA/EP	1.213	3.17×10^{-5}
1GNF/EP	0.458	2.90×10^{-6}

Table S1. Tribological properties of neat PI, 1nano-PTFE-AA/PI, 1GO-ODA/PI,1GNF/PI, neat EP, 1nano-PTFE-AA/EP, 1GO-ODA/PI and 1GNF/EP specimens.

Specimens	Microhardness (MPa)	Tensile strength (MPa)
PI	398	87
0.05GNF/PI	459	95
0.1GNF/PI	498	102
0.2GNF/PI	533	109
0.5GNF/PI	557	121
1GNF/PI	595	132
EP	277	58
0.05GNF/EP	334	64
0.1GNF/EP	365	69
0.2GNF/EP	389	74
0.5GNF/EP	408	83
1GNF/EP	423	91

 Table S2. Microhardness and tensile strength of neat PI, GNF/PI, neat EP and GNF/EP specimens.