Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supplementary Material RSC Advances

Stereospecific Alkylation of Substituted Adenines by the Mitsunobu Coupling Reaction under Microwave-

Assisted Conditions

María E. García-Rubiño,^a María C. Núñez,^a Duane Choquesillo-Lazarte,^b

Juan M. García-Ruiz,^b Yolanda Madrid,^c Joaquín M. Campos,^a*

^aDepartamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/ Campus de Cartuja, s/n, 18071 Granada (Spain)

^bLaboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (UGR - CSIC), Avenida de las Palmeras Nº 4, E-18100 Armilla, Granada (Spain)

^cCentro de Instrumentación Científica, Universidad de Granada, Edificio Mecenas. Campus Universitario de Fuente Nueva. 18071 Granada (Spain).

INDEX

Page

Figure S1: (<i>RS</i>)-124
Figure S2: (<i>R</i>)-125
Figure S3: (<i>S</i>)-126
Figure S4: (<i>RS</i>)-137
Figure S5: (<i>R</i>)-138
Figure S6: (<i>S</i>)-139
Figure S7: (<i>RS</i>)-1410
Figure S8: (S)-1411
Figure S9: (<i>RS</i>)-1712
Figure S10: (<i>R</i>)-1713
Figure S11: (<i>S</i>)-1714
Figure S12: (<i>RS</i>)-1815
Figure S13: (<i>R</i>)-1816
Figure S14: (<i>S</i>)-1817
Figure S15: (<i>RS</i>)-2218
Figure S16: (<i>R</i>)-2219
Figure S17: (<i>S</i>)-22
Figure S18: (<i>RS</i>)-2321
Figure S19: (<i>R</i>)-2322
Figure S20: (<i>S</i>)-2323
Figure S21: (<i>RS</i>)-24
Figure S22: (<i>R</i>)-2425
Figure S23: (<i>S</i>)-2426
¹ H NMR spectrum of 17 : 27
¹³ C NMR spectrum of 17 : 28
DEPT spectrum of 17 : 29
HSQC spectrum of 17:
HMBC spectrum of 17 : 31
¹ H NMR spectrum of 18 : 32
¹³ C NMR spectrum of 18 : 33

DEPT spectrum of 18 : 34
HSQC spectrum of 18:
HMBC spectrum of 18 : 36
¹ H NMR spectrum of 22 : 37
¹³ C NMR spectrum of 22 : 38
DEPT spectrum of 22 : 39
HSQC spectrum of 22:
HMBC spectrum of 22 : 41
¹ H NMR spectrum of 23 : 42
¹³ C NMR spectrum of 23 : 43
DEPT spectrum of 23 : 44
HSQC spectrum of 23:45
HMBC spectrum of 23 : 46
¹ H NMR spectrum of 24 : 47
¹³ C NMR spectrum of 24 : 48
DEPT spectrum of 24 : 49
HSQC spectrum of 24:
HMBC spectrum of 24 : 51
Figure S24: Crystal Structure (<i>RS</i>)-1752
Figure S25: Crystal Structure (<i>RS</i>)-1753
Figure S26: Crystal Structure (<i>R</i>)-2254
Figure S27: Crystal Structure (<i>R</i>)-2254
Figure S28: Crystal Structure (<i>RS</i>)-2455
Figure S29: Crystal Structure (<i>RS</i>)-2456

Figure S1

Figure S2

Figure S3

Figure S4

Figure S5

Figure S6

CHIRALPAK IA 250 x 4.6 mm Flow rate: 1ml/min room temperature PDA 250.0 nm n-hexane/2-propanol 90/10 v/v

Figure S7

Figure S8

CHIRALPAK IA 250 x 4.6 mm Flow rate: 1ml/min room temperature PDA 250.0 nm n-hexane/ethanol 80/20 v/v

Figure S9

Figure S10

Figure S11

Figure S12

Figure S13

CHIRALPAK IA 250 x 4.6 mm Flow rate: 1ml/min room temperature PDA 250.0 nm n-hexane/ethanol 80/20 v/v

Figure S14

Figure S15

Figure S16

Figure S17

Figure S18

Figure S19

Figure S20

Figure S21

Figure S22

Figure S23

500 MHz, CDCl₃

500 MHz, CDCl₃

Structure of (RS)-17

Figures S24 and S25 display the X-ray diffraction of (*RS*)-17. The crystal packing in (*RS*)-17 reveals that pairs of molecules form a dimeric structure by two symmetryrelated $-C-H\cdots\pi$ interactions involving the -C10-H10A and the five-membered ring of the purine moiety of (*RS*)-17 (C-H…centroid distance: 2.90Å and C-H…centroid angle: 151.0°). In addition, there are additional C-H… π interactions connecting dimers involving the -C22-H22B bond and the six-membered aromatic ring of the 2,3-dihydro-1,4-benzoxathiin moiety (C-H…centroid distance: 2.64 Å and C-H…centroid angle: 166.0°). Therefore these C-H… π interactions build infinite chains. The cooperative effect of non-classical H-bond interactions (C22-H22A…N1, 3.459 Å and 149.0°) generates the 3D supramolecular architecture in the crystal.

Figure S24. Molecular structure of (*RS*)-17. Hydrogen atoms are drawn as spheres of arbitrary radius. Ellipsoids of the non-hydrogen atoms are drawn at the 50% probability level.

Figure S25. Detail of the dimeric structure of (*RS*)-17 built by base pairing through --C- $H \cdots \pi$ interactions.

Structure of (R)-22

Figures S26 and S27 show the X-ray structure of (*R*)-22. The crystal of (*R*)-22 builds ribbons running along the *a* axis by intermolecular H-bonding interactions between adjacent (*R*)-22 molecules by $-N-H\cdots O(2,3-dihydro-1,4-benzoxathiin moiety)$ $interactions (2.985(5)Å, 139.64°). These ribbons are stabilized by <math>-C-H\cdots\pi$, involving the -C21-H21A bond and the six membered aromatic ring of the 2,3-dihydro-1,4benzoxathiin moiety (C-H···centroid distance: 2.62 Å and C-H···centroid angle: 168.0°) and non-classical $-C-H\cdots N$ hydrogen interactions (C8-H8…N7, 3.311(6) Å, 153°). These ribbons are associated by $-C-H\cdots C1$ interactions (3.559 Å, 125.11°) to build the 3D network.

Figure S26. Molecular structure of (R)-**22**. Hydrogen atoms are drawn as spheres of arbitrary radius. Ellipsoids of the non-hydrogen atoms are drawn at the 50% probability level.

Figure S27. Fragment of a ribbon built by base pairing through -N-H…O interactions

X-ray structure of (RS)-24

Figures S28 and S29 display the X-ray diffraction of (*RS*)-24. In the crystal of (*RS*)-24, pairs of adjacent (*RS*)-24 molecules are H-bonded by intermolecular symmetric interactions -N–H···N(imidazole) (3.07 Å, 149.0°). π,π -stacking interactions are observed between five- and six-membered rings (purine moiety) of anti-parallel neighbouring (*RS*)-24 molecules (centroid-centroid distances: 3.786 and 3.527 Å) connecting pairs and generating a ribbon structure running along the a axis. Ribbons are associated by C-H··· π interactions (C-H··· six-membered aromatic ring of the 2,3-dihydro-1,4-benzoxathiin moiety: C-H···centroid distance: 2.74 and 2.67Å and C-H···centroid angle: 161.0 and 173°) giving rise to two-dimensional frameworks parallel to the *ab* plane. Finally, additional C-H··· π interactions involving the –C47-H47 bond and the six membered aromatic ring of the purine moiety (C-H···centroid distance: 2.74 Å and C-H···centroid angle: 173.0°) cooperate to reach the 3D structure.

Figure S28. Molecular structure of (*RS*)-24. Hydrogen atoms are drawn as spheres of arbitrary radius. Ellipsoids of the non-hydrogen atoms are drawn at the 50% probability level.

Figure S29. Fragment of a ribbon structure built by base pairing through symmetric N– $H\cdots N$ interactions and π,π -stacking interactions involving aromatic rings of the purine moiety of (*RS*)-24.

REFERENCES

- [1] BRUKER, APEX2 Software, Bruker AXS Inc, Madison, Wisconsin, USA, 2010.
- [2] Sheldrick, G.M. A short history of SHELX. ActaCryst., 2008, A64, 112–122.