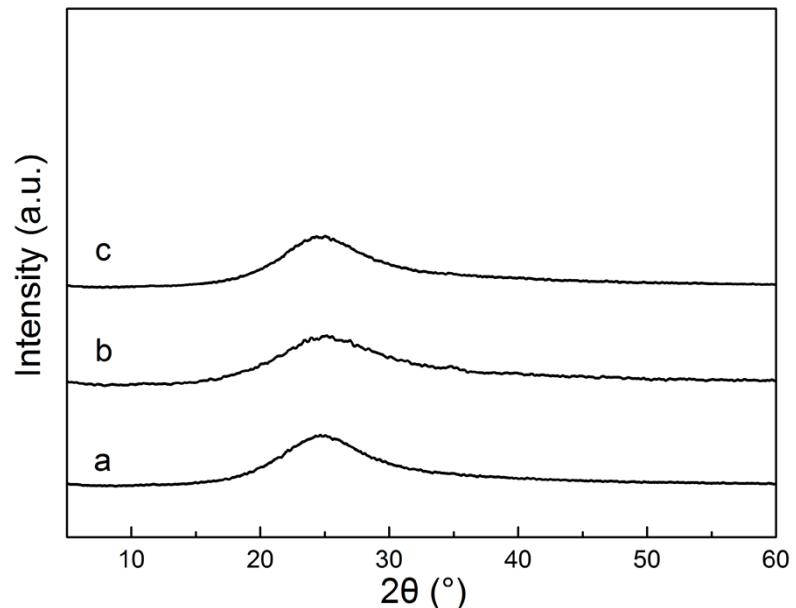


Electronic Supplementary Information (ESI) Materials for RSC Advances
This journal is © The Royal Society of Chemistry 2014

Photoluminescence of colloids of pristine MgAl layered double hydroxides

Kongli Xu, Zhuang Zhang, Guangming Chen* and Jianquan Shen


Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. E-mail: chengm@iccas.ac.cn.

*Corresponding author.

Experimental section.

Exfoliation. The decarbonated LDH_xNO₃ powdery product was dispersed in formamide in a conical beaker. The system was purged with nitrogen gas and subsequently tightly capped. Then, the dispersion system was ultra-sonicated for 20 min and subsequently stood for 1 day. The translucent dispersion was collected for characterization.

Characterizations. X-ray diffraction (XRD) patterns were collected using a Rigaku D/max 2400 diffractometer with Cu K α radiation ($\lambda = 0.154$ nm) at a scanning rate of 4° min⁻¹ in 2θ range of 3 – 70° . The size and morphology of the LDHs were observed by a HITACHI S-4300 scanning electron microscopy (SEM). Its accelerating voltage was 15 kV. Ultraviolet-visible (UV-vis) absorption spectra were collected in the range from 200 to 800 nm on a Shimadzu UV-1601 spectrophotometer, with a slit width of 5.0 nm. Luminescence spectra were obtained on an F-4500 fluorospectrophotometer with the slit of 5.0 nm. The ranges of emission and excitation spectra were 380–600 nm and 260–420 nm, respectively.

Figure S1 XRD patterns with wider 2θ range for the exfoliated MgAl LDH_{NO₃} centrifuged gel-like sediments, wherein the MgAl LDH_{NO₃} samples were obtained after the HNO₃-NaNO₃ exchange of the MgAl LDH_{CO₃} synthesized *via* (a) urea, (b) urea + NaOH, and (c) urea + HMT method, respectively.