Supplementary data

A highly selective turn-off fluorescent probe for Cu(II) based on dansyl derivative and its application in living cell imaging

Jiaguo Huang^a, Min Liu^a, Xiaoqian Ma^b, Qiong Dong^b, Bin Ye^b, Wei Wang^b, Wenbin Zeng^{a,*}

^aSchool of Pharmaceutical Sciences, Central South University. ^bThe Third Xiangya Hospital, Central South University

Correspondence information: Wenbin Zeng, School of Pharmaceutical Sciences, Central

South University, 172 Tongzipo road, Changsha, 410013, P. R. China. Fax: 0086-731-82650459;

Tel: 0086-731-82650459; E-mail: wbzeng@hotmail.com.

Contents

1. Optimization of condition for probe 1 measurement	S1
2. The UV response of 1 to various metal ions	S2
3. The titration experiments of probe 1	S3
4. The fluorescent intensity change of 1 to various anions	S4
5. Binding Constant.	
6. Job plot of the complexation between the probe 1 and Cu^{2+}	
7. The effect of pH	
8. Fluorescence quantum yields	Table S1
9. Reference	

10. ¹H NMR, ¹³C NMR and ESI or HRMS spectra

1. Optimization of condition for probe 1 measurement

Fig. S1. Influence of the HEPES buffer solution concentration on the fluorescence intensity of 20 μ M probe 1. (pH =7.0, $\lambda_{ex}/\lambda_{em}$ = 348 nm/515 nm).

2. The UV response of 1 to various metal ions

Fig. S2. UV-vis absorption spectra of probe 1 (16 μ M) towards various metal ions (800 μ M) in CH₃CN/HEPES buffer (8/2, v/v, pH =7.0).

3. The titration experiments of probe 1

(c)

wavelength (nm)

Fig. S3. (a) Fluorescence spectra of 8 μ M probe 1 with Cu²⁺ between 0 and 2 equiv (CH₃CN/HEPES buffer = 8/2, v/v, pH=7.0, $\lambda_{ex}/\lambda_{em}$ = 348 nm /515 nm); (b) Fluorescence spectra of 20 μ M probe 1 with Cu²⁺ between 0 and 10 equiv (only HEPES buffer, pH=7.0, λ_{ex} = 348 nm); (c) UV-vis absorption spectra of probe 1 (16 μ M) with Cu²⁺ between 0 and 1.1 equiv ((CH₃CN/HEPES buffer = 8/2, v/v, pH=7.0); (d) spectra of (c) from 260 nm to 450 nm.

4. The fluorescent intensity change of 1 to various anions

Fig. S4. The fluorescence variation of probe 1 (16 μ M) to various anions at 800 μ M concentration in CH3CN/HEPES buffer (8/2, v/v, pH=7.0, $\lambda_{ex}/\lambda_{em}$ = 348 nm /515 nm).

5. Binding Constant¹

The binding constant was calculated from the emission intensity - titration curves. According to the equation:

 $(F-F_0)/F_0 = f/[1+(1/K_s[Cu^{2+}])],$

where F_0 is the emission intensity of probe 1 at 515 nm, F is the emission intensity of 1at 515 nm upon the addition of different concentration of Cu (II), f is the fraction of the initial fluorescence which is accessible to the sensor, $[Cu^{2+}]$ is the concentration of Cu^{2+} .

Fig. S5. Fitting of Fluorescence titration curve of 1 in CH₃CN/HEPES (8: 2, v/v, pH =7.0). The binding constant is $Ks = 5.08 \times 10^4 \text{ M}^{-1}$.

6. Job plot of the complexation between the probe 1 and Cu²⁺

Fig. S6. Job plot of the complexation between the probe 1 and Cu^{2+} (CH₃CN/HEPES buffer = 8/2, v/v, pH=7.0, $\lambda_{ex}/\lambda_{em}$ = 348 nm /515 nm). The total molar concentration of 1 and Cu²⁺ is 10µM;

7. The effect of pH

Fig. S7. (a) Influence of pH on fluorescence spectra of free 1 (16 μ M) in CH₃CN/H₂O solution (8/2, v/v); (b) Influence of pH from 1.0 to 3.0; (c) Influence of pH 4.0 to 13.0.

Fig. S8. (a) Influence of pH on fluorescence spectra of $1/Cu^{2+}$ adduct (16 μ M 1 and 80 μ M Cu^{2+}) in CH₃CN/H₂O solution (8/2, v/v); (b) Influence of pH from 1.0 to 2.0; (c) Influence of pH from 3.0 to 11.0; (d) Influence of pH from 12.0 to 13.0.

8. Fluorescence quantum yield

Table S1. Photophysical Da	ata ^a	
Sample	F ₅₁₅	$arPhi_f(\%)$
1	178.03	8.2
$1 + Cu^{2+}$	9.23	0.42

^aF₅₁₅ : Fluorescence intensity at 515nm. Φ_f : Fluorescence quantum yield.

9. Reference

- Hou, F.P.; Huang, L.; Xi, P.X.; Cheng, J.; Zhao, X. F.; Xie, G.Q.; Shi, Y.J.; Cheng, F.J.; Yao, X.J.; Bai, D.C.; Zeng, Z. Z. *Inorg. Chem.* 2012, **51**, 2454.
- 2. Melhuish, W. H. J. Phys. Chem. 1961, 65, 229.

10. ¹H NMR, ¹³C NMR, ESI-MS or HRMS spectra

5-(1, 3-dioxoisoindolin-2-yl)naphthalene-1-sulfonic acid (3)

¹³C NMR (400 MHz, CDCl₃)

HRMS

Tert-butyl4-(5-(1,3-dioxoisoindolin-2-yl)naphthalene-1-sulfonamido)piperi dine-1-carboxylate (5)

¹H NMR (400 MHz, CDCl₃)

Tert-butyl4-(5-(1,3-dioxoisoindolin-2-yl)naphthalene-1-sulfonamido) piperidine -1-carboxylate (5)

¹³C NMR (400 MHz, CDCl₃)

Tert-butyl4-(5-(1,3-dioxoisoindolin-2-yl)naphthalene-1-sulfonamido) piperidine -1-carboxylate (5)

HRMS

5-(1,3-dioxoisoindolin-2-yl)-N-(piperidin-4-yl)naphthalene-1-sulfonamide (6)

¹H NMR (400 MHz, CDCl₃)

5-(1,3-dioxoisoindolin-2-yl)-N-(piperidin-4-yl)naphthalene-1-sulfonamide (6)

ESI-MS

nalysis Info nalysis Name [lethod 2 ample Name 20 omment 2	D:\Data\2012032 20111121-TEA.r 2120329-Jack-0 20120329-Jack-0	29-Jack- n 9 09	09.d		Acquisition Date Operator Instrument	3/29/2012 6:38:57 PM YLJ esquire6000
cquisition Paran n Source Type ass Range Mode apliary Ext coumulation Time	neter ESI Std/Normai 113.5 Volt 1162 µs		ion Polarity Scan Begin Skimmer Averages	Positive 105 m/z 40.0 Voit 2 Spectra	Alternating Ion F Scan End Trap Drive Auto MS/MS	Polarity off 1000 m/z 29.9 off
						-\\C
		317.2				
130.3	730 7	. 1	436.0 L			
 # m/z 1 116.3 2 130.3 3 239.2 4 241.2 5 288.4 6 317.2 7 318.0 8 319.2 9 436.0 10 437.0 	I 11708 19035 13555 3001 4146 240331 32527 3411 26177 7170					

1-carboxamide (7)

¹H NMR (400 MHz, CDCl₃)

4-(5-(1,3-dioxoisoindolin-2-yl)naphthalene-1-sulfonamido)-N-methylpiperidine-

4-(5-aminonaphthalene-1-sulfonamido)-N-methylpiperidine-1-carboxamide (8)

HRMS

4-(5-aminonaphthalene-1-sulfonamido)-N-methylpiperidine-1-carboxamide (8)

4-(5-aminonaphthalene-1-sulfonamido)-N-methylpiperidine-1-carboxamide (8)

Page 1 1: TOF MS ES+ 1.50e+004 Z/m 363.500 363.400 60 ő 363.300 PN4 H23 i-FIT (Norm) Formula C17 363.200 363.1491 0.0 Monoisotopic Mass, Even Electron ions 54 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 17-17 H: 22-23 N: 0-6 O: 0-6 S: 0-1 362.1413 FX-004 3 (0.082) Cm (2:39) 363,100 1-FIT 30.5 -1.8 DBE 8.5 Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.8, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 363.000 10.0 PPM 0.0 Elemental Composition Report 5.0 0.0 mDa 362.900 Calc. Mass 363.1491 362.800 363.1491 Minimum: Maximum: Mass 100 0 *

HRMS

N-methyl-4-(5-(pyridin-2-ylmethylamino)naphthalene-1-sulfonamido)piperidine-

1-carboxamide (1) ¹H NMR (400 MHz, CD₃OD)

N-methyl-4-(5-(pyridin-2-ylmethylamino)naphthalene-1-sulfonamido)piperidine-

1-carboxamide (1) ¹³C NMR (400 MHz, CD₃OD)

N-methyl-4-(5-(pyridin-2-ylmethylamino)naphthalene-1-sulfonamido)piperidine-

1-carboxamide (1)

HRMS

Page 1 1: TOF MS ES+ 1.72e+001 ž 454,600 454.500 00 454,400 80 N2 H28 i-FIT (Norm) Formula 454,300 C23 454.200 454.1913 0.0 Monoisotopic Mass, Even Electron Ions 53 formulate) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 19-24 H: 24-30 N: 0-6 O: 0-6 S: 0-1 453.1835 FX-008 9 (0.220) i-FIT 13.4 454.100 -1.8 12.5 DBE Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.8, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 454.000 10.0 PPM 0.0 Elemental Composition Report 5.0 0.0 mDa 453.900 Calc. Mass 454.1913 453.800 454.1913 Minimum: Maximum: Mass 100 8 ò