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Figure S1 Crystal structure of ligand 2. CCDC 908777  

 

Table S1. Summary of crystallographic data for ligand 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Ligand 2 

Formula C41H48N4O4 

Fw 660.83 

crystal system Monoclinic 

space group C2/c 

a (Å) 19.779(2) 

b (Å) 9.9011(13) 

c (Å) 18.960(2) 

α (deg) 90.00 

β (deg) 102.300(2) 

γ (deg) 90.00 

v (Å3) 3627.8(8) 

Z 4 

μ (mm-1) 0.078 

R (int) 0.0702 

GOOF 0.954 

R1 [I>2sigma(I)] 0.0573 

wR2[I>2sigma(I)] 0.1474 
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Calculation of the entropy and enthalpy difference between homo-propagation and 

cross-propagation 

In a first-order Markovian statistics, PLA derived from rac-lactide could exhibit up to five 

tetrad sequences (mmm, mmr, rmm, mrm, rmr) in relative ratios determined by the ability of 

initiators to control racemic [r-diad] and meso [m-diad] connectivity of the monomer units. 

According to first-order Markovian statistics, the probability for meso linkages could be 

determined as 

Pm = km/(km + kr) = kS/SS/(kS/SS + kS/RR) = kR/RR/(kR/SS + kR/RR)  (S1) 

where kS/SS and kR/RR were the rate constants of homopropagation, kS/RR and kR/SS were the 

rate constants of cross propagation. If kS/SS > kS/RR or kR/RR > kR/SS, the formation of isotactic 

sequences were favored, otherwise syndiotactic sequences were formed. The following 

equations could be deduced according to absolute reaction rate theory: 

kS/SS = kR/RR = km = (KT/h)exp[(∆S≠ 
m/R) – (∆H≠ 

m/RT)]  (S2) 

kR/SS = kS/RR = kr = (KT/h)exp[(∆S≠ 
r /R) – (∆H≠ 

r /RT)]   (S3) 

Further deduction of equation S4 could be obtained from equation S2 and equation S3:   

Pm/(1 – Pm) = km/kr = exp[(∆S≠ 
m – ∆S≠ 

r )/R – (∆H≠ 
m – ∆H≠ 

r )/RT]  (S4) 

where (∆S ≠ 
m –∆S ≠ 

r ) was the entropy difference between  homopropagation and cross 

propagation, and (∆H≠ 
m–∆H≠ 

r ) was the enthalpy difference between homopropagation and cross 

propagation. To determine the values of (∆S≠ 
m–∆S≠ 

r ) and (∆H≠ 
m–∆H≠ 

r ), lnPm/(1 – Pm) was 

plotted versus the 1/T (Figure S2). From this plot, the entropy difference (∆S≠ 
m–∆S≠ 

r )of –23.23 

cal/K·mol and activation enthalpy difference (∆H≠ 
m–∆H≠ 

r ) of –9.42 kcal/K·mol were obtained, 

which may explain the preference of isotactic stereosequence. 

 

Figure S2 Relationship between polymerization temperature and stereochemistry of the resulting 

poly(rac-LA)s by using 3a. 

 


