Enhanced visible photocatalytic activity of BiVO₄@β-AgVO₃ composite synthesized by an in-situ growth method

Yanmei Yang,^a Yuanyuan Liu,^{*a} Baibiao Huang,^{*a} Rui Zhang,^b Ying Dai,^b Xiaoyan Qin^a and Xiaoyang Zhang^a

^a State key lab of crystal materials, Shandong university, Jinan, China, 250100.
Email: bbhuang@sdu.edu.cn (Baibiao Huang), yyliu@sdu.edu.cn (Yuanyuan Liu)
^b School of physics, Shandong university, Jinan, China, 250100.

Experimental section

Materials

AgNO₃, NH₄VO₃, Bi(NO₃)₃·5H₂O and NH₃·H₂O (25-28%) were analytical reagent grade and used as received without further purification.

Synthesis of β-AgVO₃ nanowires, BiVO₄@β-AgVO₃ composites and BiVO₄

1. Synthesis of β-AgVO₃ nanowires

Immol NH₄VO₃ was dissolved in 60 mL deionized water under stirring to obtain a transparent solution. Then, Immol AgNO₃ was added into the above solution and stirred for 2min. The pH value of the solution was adjusted to 8-8.2 by using NH₃·H₂O (25-28%) and the mixture was transferred into a 100 mL Teflon-lined stainless vessel and heated at 180 °C for 12h. The brown β -AgVO₃ nanowires were washed several times with deionized water and ethanol, dried in an oven at 60°C for 6h.

2. Synthesis of BiVO4@β-AgVO3 composites

0.2g as-prepared β -AgVO₃ nanowires were dispersed in 75 mL deionized water. Then, a certain amount of Bi(NO₃)₃·5H₂O was added under stirring and ultrasonication to obtain an uniform mixture which was transferred into a 100 mL Teflon-lined stainless vessel and heated at 160 °C for 12h. The final samples were washed several times with deionized water and ethanol, and dried in an oven at 60 °C for 6h. BiVO₄@ β -AgVO₃ composites with different molar amounts of BiVO₄ were obtained: 5%, 10%, 15%, 20%, and the samples prepared were denoted as BiVO₄@ β -AgVO₃-5%, BiVO₄@ β -AgVO₃-10%, BiVO₄@ β -AgVO₃-15%, BiVO₄@ β -AgVO₃-20%, respectively.

3. Synthesis of BiVO₄

For comparison, $BiVO_4$ was prepared using equimolar NH_4VO_3 and $Bi(NO_3)_3 \cdot 5H_2O$ through the above process, and the other conditions are the same as that in 2.

Characterization

XRD patterns of the as-prepared samples were recorded on an X-ray diffractometer (XRD Bruker D8-advanced X-ray powder diffractometer with Cu-Ka radiation λ =1.5418 A°). The morphology and microstructure were determined by scanning electron microscopy (SEM Hitachi S-4800 microscope) and high-resolution transmission electron microscopy (HR-TEM JEOL JEM-2100 instrument). The diffuse reflectance spectra (DRS) were measured using a UV/visible

spectrophotometer (UV-2550, Shimadzu). The Brunauer–Emmett–Teller (BET) surface areas were measured with a Micromeritics ASAP 2020 apparatus at liquid nitrogen temperature. The TOC (total organic carbon) before and after photocatalysis by $BiVO_4@\beta$ -AgVO₃-15% was evaluated by TOC-V CPH (Shimadzu).

Photocatalytic evalution

Photocatalytic activies of β -AgVO₃, BiVO₄ and BiVO₄@ β -AgVO₃ composites were evaluated by the degradation of rhodamine B (RhB) under visible light irradiation of a 300 W Xe arc lamp (PLS-SXE300, Beijing Trusttech Co. Ltd.) with UV cutoff filter (providing visible light with $\lambda >$ 420 nm). Typically, RhB is a potentially toxic and carcinogenic pollutant and extensively used to characterize the photocatalytic activities of materials in photocatalysis research. In a typical process, 0.1g of as-prepared samples were added to 100 mL RhB solution (10mg·L⁻¹). After being dispersed in an ultrasonic bath, the mixture was kept under stirring for 1 h in the dark to reach adsorption equilibrium and exposed to the visible light irradiation. 5 mL solution was taken out from the reaction beaker at given time intervals and centrifuged to remove the suspension. Then the RhB degradation concentration was measured by a Shimadzu UV2550 recording spectrophotometer.

Fig. S1 XRD patterns of as-prepared β-AgVO₃

Fig. S2 XRD patterns of as-prepared BiVO₄

Fig. S3 SEM image of BiVO₄