Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Informations for

Pd/C-Catalyzed Cross-Coupling Reaction of Benzyloxysilanes with Halosilanes for Selective Synthesis of Unsymmetrical Siloxanes

Masayasu Igarashi, Keiko Kubo, Tomohiro Matsumoto, Kazuhiko Sato, Wataru Ando and Shigeru Shimada*

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

Experimental

Caution! Dried Pd/Cs are potentially flammable in air. Keep the reaction mixture under an inert atmosphere and moisten Pd/Cs with water for safety after the reaction. Ignoring safety precautions can lead to fire!

Instrumentation and chemicals

¹H (400 MHz) and ¹³C NMR (100 MHz) spectra of benzyloxysilanes were recorded on a JEOL ECX-400P spectrometer using CDCl₃ as a solvent. ²⁹Si NMR (79.5 MHz) spectra of benzyloxysilanes were recorded on a JEOL LA500 spectrometer using CDCl₃ as a solvent. ¹H (600 MHz), ¹³C NMR (151 MHz) and ²⁹Si NMR (119 MHz) spectra of siloxanes were recorded on a Bruker AVANCEIII spectrometer equipped with a cryoprobe using CDCl₃ as a solvent. Chemical shifts (δ) are reported in parts per million relative to external standard (tetramethylsilane, 0.00 ppm) for ¹H, ¹³C and ²⁹Si. Time-of-flight mass spectra of the products were analyzed on a Bruker micrOTOF II equipped with an ESI probe.

Pd/Cs (ASCA-2, NX and OH types) were obtained from N. E. CHEMCAT Co. Ltd. Ph₂'BuSiCl, anhydrous CDCl₃ and 1,4-bis(trimethylsilyl)benzene were obtained from Aldrich Chemical Co. Et₃N, super dehydrated EtOAc, Na₂SO₄, Me₂SiCl₂ and CH₂Cl₂ were obtained from Wako Pure Chemicals Ind., Ltd. Ph₃SiCl, Ph₂SiCl₂, PhSiCl₃, MeSiCl₃, SiCl₄, Me₃SiCl, Me₃SiBr, Me₃SiI, benzyl alcohol, hexamethylbenzene and 4-(dimethylamino)pyridine (DMAP) were obtained from Tokyo Chemical Industry Co., Ltd. Ph₂MeSiCl and PhMe₂SiCl were obtained from Gelest, Inc. H₂ (G1 grade, 99.99999%) was obtained from Taiyo Nippon Sanso Corporation. Benzyloxysilanes except for Me₂Si(OBn)₂, MeSi(OBn)₄ were prepared as reported previously.^{S1}

All Pd/Cs were dried at 120 °C for 48 h under vacuum. Super dehydrated EtOAc and anhydrous CDCl₃ used in the reaction were degassed by three freeze-pump-thaw cycles.

Product characterization and determination of the yields except for Me₂Si(OSiMe₃)₂ and MeSi(OSiMe₃)₃

Characterization of products is based on the comparison of their NMR data with reported data or those of commercial products. Yields of the products except for Me₂Si(OSiMe₃)₂ and MeSi(OSiMe₃)₃ were determined by integral values of ¹H NMR analysis by using hexamethylbenzene as an internal standard.

Determination of the yields for Me₂Si(OSiMe₃)₂ and MeSi(OSiMe₃)₃

Because of volatility of $Me_2Si(OSiMe_3)_2$ and $MeSi(OSiMe_3)_3$ and overlapping of their Me proton signals with those of by-products in ¹H NMR spectra, yields of $Me_2Si(OSiMe_3)_2$ and $MeSi(OSiMe_3)_3$

were determined by integral values of ²⁹Si NMR signals using inverse-gated decoupling pulse sequence with 1,4-bis(trimethylsilyl)benzene as an internal standard. To ensure quantitative analysis by ²⁹Si NMR, samples were dissolved in CDCl₃ with a trace amount of Cr(acac)₃ as a relaxation agent. At the beginning of the study, we confirmed that the pulse delay time 10 sec is sufficient to quantify the product yields by measuring the ²⁹Si NMR spectra with various pulse delay time 2, 10, 20, 40 and 80 sec for the commercial product of Me₂Si(OSiMe₃)₂ (Figure S1). From this result, 10 sec was adopted as pulse delay time for quantitative analysis.

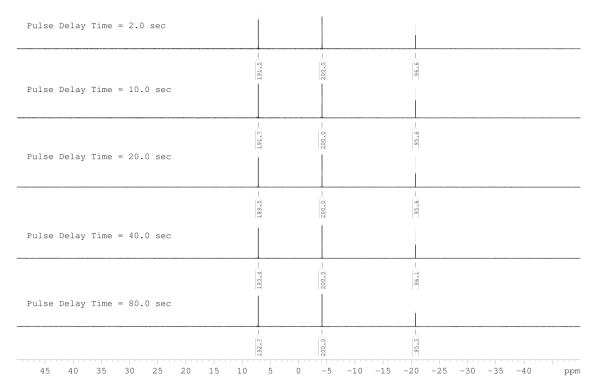


Figure S1. ²⁹Si NMR spectra of a mixture of $Me_2Si(OSiMe_3)_2$ and 1,4-bis(trimethylsilyl)benzene with various relaxation delay times (small amount of $Cr(acac)_3$ was added as a relaxation agent).

Typical procedure for the synthesis of benzyloxysilanes.^{S1}

As an example, synthesis of Me₂Si(OBn)₂^{S2} are shown below.

To a solution of benzyl alcohol (66.5 g, 615 mmol), Et₃N (62.2 g, 615 mmol) and DMAP (183 mg, 1.50 mmol) in CH₂Cl₂ (500 mL) was added Me₂SiCl₂ (38.7 g, 300 mmol) dropwise under N₂ atmosphere. After the mixture was stirred at room temperature for 24 h, it was diluted with hexane (700 mL), washed with water to remove triethylamine hydrochloride, DMAP, residual benzyl alcohol and Et₃N and dried over Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by Kugelrohr distillation (6 Pa, oven temp. 120 °C) to give Me₂Si(OBn)₂ 65.6 g (80% yield) as a colorless oil.

¹H NMR (CDCl₃, δ) 0.22 (s, 6H, Me), 4.77 (s, 4H, –OCH₂), 7.2–7.4 (m, 10H, Ph); ¹³C NMR (CDCl₃, δ) – 3.0, 64.5, 126.6, 127.2, 128.3, 140.5; ²⁹Si NMR (CDCl₃, δ) –1.2; HRMS *m/z* calcd for C₁₆H₂₀O₂SiNa 295.1125 [*M* + Na]⁺, found 295.1127.

MeSi(OBn)3^{S3}

The typical procedure was followed by using MeSiCl₃ (29.9 g, 200 mmol), benzyl alcohol (66.0 g, 610 mmol), Et₃N (61.7 g, 610 mmol) and DMAP (244 mg, 2.00 mmol). The crude mixture was purified by Kugelrohr distillation (6 Pa, oven temp. 173 °C) to afford MeSi(OBn)₃ (66.3 g, 91% yield) as a colorless oil.

¹H NMR (CDCl₃, δ) 0.22 (s, 3H, Me), 4.84 (s, 6H, –OCH₂), 7.3–7.4 (m, 15H, Ph); ¹³C NMR (CDCl₃, δ) – 6.8, 64.7, 126.7, 127.3, 128.3, 140.2; ²⁹Si NMR (CDCl₃, δ) –41.3; HRMS *m/z* calcd for C₂₂H₂₄O₃SiNa 387.1387 [*M* + Na]⁺, found 387.1381.

Si(OBn)4^{S4}

The typical procedure was followed by using SiCl₄ (3.50 g, 20.6 mmol), benzyl alcohol (9.27 g, 86.5 mmol), Et₃N (8.76 g, 86.5 mmol) and DMAP (403 mg, 3.30 mmol). The crude mixture was purified by Kugelrohr distillation (10 Pa, oven temp. 200 °C) to afford Si(OBn)₄ (4.21 g, 45% yield) as a colorless solid.

¹H NMR (CDCl₃, δ) 4.79 (s, 8H, –OCH₂), 7.1–7.4 (m, 20H, Ph); ¹³C NMR (CDCl₃, δ) 65.5 (–CH₂Ph), 126.7, 127.3, 128.2, 139.7; ²⁹Si NMR (CDCl₃, δ) –80.7; HRMS *m/z* calcd for C₂₈H₂₈O₄SiNa 479.1649 [*M* + Na]⁺, found 479.1633.

General procedure for cross-coupling reaction of benzyloxysilanes with Me₃SiCl.

To a stirred mixture of a benzyloxysilane (200 mg), Pd/C (10 mol% of Pd for the total amounts of benzyl group) in EtOAc (6.0 mL) was added 2 equivalents of Me₃SiCl under Ar atmosphere at room temperature. The resulting mixture was stirred for an appropriate time and then filtered through a membrane filter (GE Healthcare Puradisc 13, 0.45 μm). After the removal of the solvent, CDCl₃, hexamethylbenzene (internal standard) and a trace amount of Cr(acac)₃ (relaxation agent) were added to the filtrate. The conversion and the yield were determined by ¹H NMR analysis of the crude mixture. For Me₂Si(OSiMe₃)₂ and MeSi(OSiMe₃)₃, the yields were determined by ²⁹Si NMR analysis as mentioned above.

Ph₃SiOSiMe₃S5

The general procedure was followed by using Ph₃SiOBn (201 mg, 0.548 mmol), Pd/C (58.0 mg, 0.05 mmol) and Me₃SiCl (119 mg, 1.09 mmol). After stirring for 9 h, the mixture was analyzed by ¹H NMR showing the formation of Ph₃SiOSiMe₃ in 96% yield.

¹H NMR (CDCl₃, δ) 0.11 (s, 9H, Me), 7.36–7.60 (m, 15H, Ph); ¹³C NMR (CDCl₃, δ) 2.04 (Me), 127.7, 129.7, 135.0, 136.2; ²⁹Si NMR (CDCl₃, δ) –21.6, 10.8; HRMS *m/z* calcd for 371.1258 [*M* + Na]⁺, found 371.1265.

Ph2tBuSiOSiMe3S6

The general procedure was followed by using Ph_2 'BuSiOBn (0.201 g, 0.580 mmol), Pd/C (62.0 mg, 0.058 mmol) and Me₃SiCl (129 mg, 1.19 mmol). After stirring for 72 h, the mixture was analyzed by ¹H NMR showing the formation of Ph_2 'BuSiOSiMe₃ in 65% yield.

¹H NMR (CDCl₃, δ) 0.18 (s, 9H, Si(CH₃)₃), 1.07 (s, 9H, C(CH₃)₃) 7.36–7.80 (m, 10H, Ph); ¹³C NMR (CDCl₃, δ) 2.3 (Si(CH₃)₃), 19.4, 26.9, 127.6, 129.4, 135.1, 136.2; ²⁹Si NMR (CDCl₃, δ) –12.6, 8.9,; HRMS *m/z* calcd for 329.1751 [*M* + Na]⁺, found 329.1743.

Ph2MeSiOSiMe3S5

The general procedure was followed by using Ph₂MeSiOBn (0.201 g, 0.66 mmol), Pd/C (70.0 mg, 0.066 mmol) and Me₃SiCl (146 mg, 1.35 mmol). After stirring for 9 h, the mixture was analyzed by ¹H NMR showing the formation of Ph₂MeSiOSiMe₃ in 74% yield.

¹H NMR (CDCl₃, δ) 0.21 (s, 9H, Si*Me*₃), 0.71 (s, 3H, SiPh₂*Me*) 7.40–7.66 (m, 10H, Ph); ¹³C NMR (CDCl₃, δ) -0.3 (Si*Me*₃), 2.2 (SiPh₂*Me*), 127.8, 129.6, 134.0, 138.3; ²⁹Si NMR (CDCl₃, δ) -12.2 (*Si*Ph₂Me), 10.0 (*Si*Me₃); HRMS *m/z* calcd for 309.1101 [*M* + Na]⁺, found 309.1113.

PhMe₂SiOSiMe₃^{S5}

The general procedure was followed by using PhMe₂SiOBn (0.200 g, 0.825 mmol), Pd/C (0.089 g, 0.084 mmol) and Me₃SiCl (181 mg, 1.66 mmol). After stirring for 9 h, the mixture was analyzed by ¹H NMR showing the formation of PhMe₂SiOSiMe₃ in 54% yield.

¹H NMR (CDCl₃, δ) 0.13 (s, 9H, Si*Me*₃), 0.38 (s, 6H, SiPh*Me*₂), 7.33–7.58 (m, 5H, Ph); ¹³C NMR (CDCl₃, δ) 1.5 (Si*Me*₃), 2.5 (SiPh*Me*₂), 128.7, 129.6, 133.9, 139.0; ²⁹Si NMR (CDCl₃, δ) –1.9, 9.0; HRMS *m/z* calcd for 247.0945 [*M* + Na]⁺, found 247.0946.

Ph₂Si(OSiMe₃)₂^{S7}

The general procedure was followed by using $Ph_2Si(OBn)_2$ (0.200 g, 0.504 mmol), Pd/C (107 mg, 0.101 mmol) and Me₃SiCl (219 mg, 2.02 mmol). After stirring for 5 h, the mixture was analyzed by ¹H NMR showing the formation of $Ph_2Si(OSiMe_3)_2$ in 92% yield.

¹H NMR (CDCl₃, δ) 0.22 (s, 18H, Me), 7.4–7.7 (m, 10H, Ph); ¹³C NMR (CDCl₃, δ) 2.1 (Me), 127.7, 129.8, 134.3, 136.8; ²⁹Si NMR (CDCl₃, δ) –47.3 (Ph₂Si(OSiMe₃)₂), 9.8 (OSiMe₃); HRMS *m/z* calcd for 361.1470 [*M* + Na]⁺, found 361.1477.

Me₂Si(OSiMe₃)₂^{S8}

The general procedure was followed by using Me₂Si(OBn)₂ (0.203 g, 0.745 mmol), Pd/C (0.157 g, 0.148 mmol) and Me₃SiCl (318 mg, 2.93 mmol). After stirring for 9 h, the mixture was analyzed by ²⁹Si NMR showing the formation of Me₂Si(OSiMe₃)₂ in 54% yield.

¹H NMR (CDCl₃, δ) 0.09 (s, 6H, Si*Me*₂), 0.16 (s, 18H, OSi*Me*₃); ¹³C NMR (CDCl₃, δ) 0.2 (Si*Me*₂), 0.8 (OSi*Me*₃); ²⁹Si NMR (CDCl₃, δ) -21.5 (*Si*Me₂), 6.5 (OSiMe₃).

PhSi(OSiMe₃)₃^{S9}

The general procedure was followed by using $PhSi(OBn)_3$ (0.200 g, 0.469 mmol), Pd/C (0.141 g, 0.133 mmol) and Me₃SiCl (306 mg, 2.81 mmol). After stirring for 9 h, the mixture was analyzed by ¹H NMR showing the formation of $PhSi(OSiMe_3)_3$ in 89% yield.

¹H NMR (CDCl₃, δ) 0.23 (s, 27H, Me), 7.2–7.4 (m, 5H, Ph); ¹³C NMR (CDCl₃, δ) 1.9 (Me), 127.6, 129.6, 133.9, 135.6; ²⁹Si NMR (CDCl₃, δ) –77.7 ((Me₃SiO)₃Si), 8.9 (OSiMe₃); HRMS *m/z* calcd for 373.1501 [*M* + Na]⁺, found 373.1499.

MeSi(OSiMe₃)₃^{S10}

The general procedure was followed by using MeSi(OBn)₃ (0.201 g, 0.551 mmol), Pd/C (0.176 g, 0.165 mmol) and Me₃SiCl (357 mg, 3.29 mmol). After stirring for 3 h, the mixture was analyzed by ²⁹Si NMR showing the formation of MeSi(OSiMe₃)₃ in 88% yield.

¹H NMR (CDCl₃, δ) 0.00 (s, 3H, Si*Me*), 0.07 (s, 27H, OSi*Me*₃); ¹³C NMR (CDCl₃, δ) –3.2 (Si*Me*), 0.7 (OSi*Me*₃); ²⁹Si NMR (CDCl₃, δ) –64.9 (*Si*Me), 6.9 (OSiMe₃); HRMS *m*/*z* calcd for 318.0929 [*M* – Me+Na]⁺, found 318.0933.

Si(OSiMe₃)₄^{S10}

The general procedure was followed by using $Si(OBn)_4$ (0.202 g, 0.442 mmol), Pd/C (0.187 g, 0.176 mmol) and Me₃SiCl (384 mg, 3.54 mmol). After stirring for 6 h, the mixture was analyzed by ¹H NMR showing the formation of Si(OSiMe₃)₄ in 93% yield.

¹H NMR (CDCl₃, δ) 0.18 (s, 54H, Me); ¹³C NMR (CDCl₃, δ) 1.5 (Me); ²⁹Si NMR (CDCl₃, δ) –104.6 ((Me₃SiO)₃Si), 8.4 (OSiMe₃); HRMS *m/z* calcd for 407.1359 [*M* + Na]⁺, found 407.1352.

Large scale synthesis of Ph₃SiOSiMe₃

A mixture of Ph₃SiOBn (10.0 g, 27.3 mmol), Pd/C (2.91 g, 2.73 mmol) and Me₃SiCl (5.93 g, 54.6 mmol) in EtOAc (500 mL) was stirred at room temperature for 1 week. The reaction mixture was then concentrated under reduced pressure to remove residual Me₃SiCl, and then Pd/C was filtered through Hyflo Super Cel using ethyl acetate as a solvent. Then the solution was concentrated under reduced pressure and the residue was purified by Kugelrohr distillation (8 Pa, oven temp. 140 °C) to give **2** (8.93 g,

94%) as a colorless solid.

- S1. M. Igarashi, T. Matsumoto, K. Sato, W. Ando and S. Shimada, Chem. Lett., 2014, in press.
- S2. (a) A. Wright and R. West, J. Am. Chem. Soc., 1974, 96, 3214; (b) R. J. P. Corriu, D. Leclercq, P. H.
- Mutin, H. Samson and A. Vioux, J. Organomet. Chem., 1994, 466, 43.
- S3. S. Bienz and A. Chapeaurouge, Helv. Chim. Acta., 1991, 74, 1477.
- S4. A. Y. Khalimon, R. Simionescu and G. I. Nikonov, J. Am. Chem. Soc., 2011, 133, 7033.
- S5. R. Arias-Ugarte, H. K. Sharma, A. L. C. Morris and K. H. Pannell, J. Am. Chem. Soc., 2012, 134, 848.
- S6. I. W. J. Still and W. Daoquan, Phosphorus, Sulfur Silicon Relat. Elem., 1991, 62, 83.
- S7. (a) R. E. Swaim and W. P. Weber, *J. Am. Chem. Soc.*, 1979, **101**, 5703; (b) R. Keyrouz and V. Jouikov, *New J. Chem.*, 2003, **27**, 902.
- S8. D. S. Fattakhova, V. V. Jouikov and M. G. Voronkov, J. Organomet. Chem., 2000, 613, 170.
- S9. S. D. Korkin, M. I. Buzin, E. V. Matukhina, L. N. Zherlitsyna, N. Auner and O. I. Shchegolikhina, *J. Organomet. Chem.*, 2003, **686**, 313.
- S10. G. Engelhardt, H. Jancke, M. Mägi, T. Pehk and E. Lippmaa, J. Organomet. Chem., 1971, 28, 293.