Electronic supplementary information

Dual mode of extraction for Cs⁺ and Na⁺ ions with di-cyclohexano-18-crown-6 and bis-(2-propyloxy)-calix[4]-crown-6 in ionic liquids: Density Functional Theoretical investigation

Sk. M. Ali*#, J.M. Joshi, A. Singha Deb, A. Boda, K.T. Shenoy and S.K. Ghosh

Chemical Engineering Division,

Bhabha Atomic Research Centre, Mumbai, 400 085, India. [#]Homi Bhabha National Institute, Mumbai, 400 085, India.

*corresponding author

Table.S1: Calculated structural parameters of DCH18C6 at different level of DFT functional and basis

Method	C-C(Å)	C-O(Å)	0-0(Å)
BP86/SVP	1.521, 1.521, 1.517, 1.517	1.412, 1.420, 1.421, 1.416,	5.461, 6.062, 5.805
		1.412, 1.413, 1.412, 1.412,	
		1.415, 1.412, 1.410, 1.410	
B3LYP/SVP	1.518, 1.517, 1.514, 1.514	1.412, 1.416, 1.413, 1.408,	5.432, 6.070, 5.811
		1.405, 1.402, 1.402, 1.405,	
		1.408, 1.405, 1.405, 1.406	
TPSSH/SVP	1.517, 1.517, 1.513, 1.513	1.419, 1.416, 1.412, 1.417,	5.468, 6.017, 5.770
		1.408, 1.407, 1.406, 1.409,	
		1.412, 1.408, 1.409, 1.417	
BP86/TZVP	1.516, 1.517, 1.513, 1.513	1.428, 1.423, 1.427, 1.430,	5.503, 6.033, 5.787
		1.422, 1.421, 1.421, 1.423,	
		1.420, 1.419, 1.419, 1.420	
B3LYP/TZVP	1.514, 1.523, 1.510, 1.510	1.418, 1.422, 1.419, 1.415,	5.548,6.065, 5.814
		1.414, 1.413, 1.413, 1.414,	
		1.412, 1.410, 1.411, 1.411	
TPSSH/TZVP	1.514, 1.514, 1.510, 1.510	1.423, 1.426, 1.422, 1.418,	5.514, 6.015, 5.743
		1.415, 1.414, 1.414, 1.415,	
		1.419, 1.416, 1.417, 1.417	

set.

Method	C-C(Å)	C-O(Å)	0-0(Å)	M-O(Å)
BP86/SVP	1.516, 1.517, 1.518,	1.439, 1.438, 1.428,	4.704, 5.886, 5.937	3.138, 3.138,
	1.518	1.430, 1.423, 1.422,		3.126, 3.287,
		1.422, 1.424, 1.423,		3.218, 3.120
		1.422, 1.423, 1.422		
B3LYP/SVP	1.513, 1.514, 1.514,	1.431, 1.420, 1.430,	4.724, 5.874, 5.929	3.139, 3.139,
	1.514	1.422, 1.415, 1.414,		3.125, 3.295,
		1.414, 1.414, 1.416,		3.221, 3.123
		1.415, 1.415, 1.414,		
TPSSH/SVP	1.513, 1.513, 1.514,	1.434, 1.426, 1.434,	4.701, 5.851, 5.906	3.132, 3.132,
	1.514	1.423, 1.420, 1.418,		3.282, 3.111,
		1.418, 1.419, 1.419,		3.116, 3.215
		1.419, 1.418, 1.419		
BP86/TZVP	1.511, 1.511, 1.512,	1.438, 1.445, 1.445,	4.666, 5.865, 5.922	3.110, 3.094,
	1.512	1.433, 1.429, 1.431,		3.261, 3.100,
		1.433, 1.430, 1.432,		3.095, 3.188
		1.431, 1.430, 1.430		
B3LYP/TZVP	1.509, 1.509,	1.436, 1.429, 1.436,	4.688, 5.863, 5.921	3.126, 3.126,
	1.509,1.509	1.426, 1.421, 1.423,		3.287, 3.114,
		1.422, 1.422, 1.423,		3.116, 3.210
		1.422, 1.422, 1.422		
TPSSH/TZVP	1.509, 1.509,	1.439, 1.439, 1.430,	4.670, 5.905, 5.808	3.109, 3.088,
	1.509,1.509	1.434, 1.424, 1.426,		3.079, 3.262,
		1.425, 1.425, 1.427,		3.092, 3.169
		1.426, 1.426, 1.425		

Table.S2: Calculated structural parameters of Cs⁺ ion -DCH18C6 complex at different level of DFT and basis set.

Method	C-C(Å)	C-O(Å)	0-0(Å)	
BP86/SVP	1.512, 1.508, 1.513,	1.444, 1.439, 1.430,	4.872, 5.023, 4.796	2.510, 2.581,
	1.523	1.438, 1.424, 1.427,		2.710, 2.420,
		1.425, 1.430, 1.427,		2.608, 2.411
		1.423, 1.423, 1.425		
B3LYP/SVP	1.508, 1.515, 1.509,	1.421, 1.430, 1.434,	4.855, 5.014, 4.774	2.50, 2.571,
	1.519	1.430, 1.416, 1.419,		2.706, 2.597,
		1.417, 1.422, 1.419,		2.410, 2.396
		1.415, 1.415, 1.418		
TPSSH/SVP	1.508, 1.519, 1.509,	1.434, 1.438, 1.426,	4.843, 5.010, 4.766	2.495, 2.564,
	1.519	1.434, 1.420, 1.423,		2.396, 2.595,
		1.421, 1.426, 1.422,		2.410, 2.609
		1.419, 1.419, 1.421		
BP86/TZVP	1.507, 1.512, 1.512,	1.450, 1.444, 1.444,	4.939, 5.122, 5.254	2.535, 2.601,
	1.508	1.436, 1.430, 1.434,		2.663, 2.467,
		1.433, 1.435, 1.433,		2.444, 2.734
		1.430, 1.432, 1.436		
B3LYP/TZVP	1.505, 1.510, 1.505,	1.439, 1.435, 1.435,	4.913, 5.097, 4.827	2.520, 2.597,
	1.515	1.427, 1.421, 1.426,		2.740, 2.633,
		1.424, 1.427, 1.424,		2.432, 2.417
		1.421, 1.421, 1.423		
TPSSH/TZVP	1.505, 1.510, 1.505,	1.444. 1.439, 1.431,	4.890, 5.084, 4.821	2.514, 2.577,
	1.515	1.439, 1.425, 1.429,		2.643, 2.421,
		1.428, 1.431, 1.428,		2.437, 2.715
		1.426, 1.425, 1.426		

Table.S3: Calculated structural parameters of Na⁺ ion -DCH18C6 complex at different level of DFT and basis set.

Method		C-C (Å)	C-O(Å)	O-O(Å)
Basis	Functional			
	BP86	1.523, 1.521, 1.530,	1.378, 1.387, 1.425,	6.998, 6.422, 6.729
		1.521, 1.519	1.423, 1.411, 1.412,	
			1.413, 1.412, 1.415,	
			1.416, 1.413, 1.415	
	B3LYP	1.516, 1.518, 1.518,	1.381, 1.374, 1.417,	6.451, 6.866, 6.816
SVD		1.526, 1.520	1.406, 1.407, 1.409,	
311			1.407, 1.405, 1.406,	
			1.404, 1.404, 1.416	
	TPSSH	1.518, 1.517, 1.526,	1.376, 1.383, 1.419,	6.827, 6.492, 6.922
		1.517, 1.515	1.408, 1.409, 1.410,	
			1.409, 1.411, 1.413,	
			1.411, 1.409, 1.421	
	BP-86	1.513, 1.516, 1.525,	1.392, 1.382, 1.434,	6.473, 7.038, 6.541
		1.525, 1.516	1.433, 1.418, 1.419,	
			1.420, 1.420, 1.420,	
			1.423, 1.423, 1.421	
	B3LYP	1.513, 1.5111, 1.521,	1.384, 1.377, 1.425,	6.465, 6.970, 6.656
TZVP		1.512, 1.514	1.413, 1.415, 1.416,	
12.11			1.412, 1.412, 1.412,	
			1.411, 1.410, 1.424	
	TPSSH	1.510, 1.513, 1.521,	1.387, 1.37, 1.430,	6.473, 6.953, 6.591
		1.512, 1.513	1.416, 1.418, 1.419,	
			1.415, 1.416, 1.416,	
			1.414, 1.414, 1.428	

Table.S4: Calculated structural parameters of BPC6 at different level of DFT functional and basis set.

Method		C-C(Å)	C-O(Å)	0-0(Å)	M-O(Å)
Basis	Functional				
		1.514, 1.514, 1.523,	1.400, 1.394, 1.438,	6.459, 6.597, 6.291	3.256, 3.261,
	BP86	1.518, 1.518	1.420, 1.422, 1.420,		3.327, 3.445,
			1.420, 1.421, 1.421,		3.497, 3.264
			1.419, 1.419, 1.437		
	B3LYP	1.511, 1.511, 1.519,	1.395, 1.389, 1.429,	6.452, 6.552, 6.295	3.269, 3.258,
		1.515, 1.515	1.430, 1.413, 1.414,		3.268, 3.324,
SVP			1.412, 1.412, 1.413,		3.431, 3.446
			1.412, 1.412. 1.412		
	TPSSH	1.515, 1.514, 1.519,	1.391, 1.396, 1.433,	6.549, 6.430, 6.271	3.235, 3.251,
		1.511, 1.511	1.416, 1.416, 1.416,		3.261, 3.316,
			1.417, 1.416, 1.416,		3.446, 3.463
			1.418, 1.417, 1.434		
		1.508, 1.509, 1.519,	1.405, 1.398, 1.446,	6.430, 6.599, 6.278	3.253, 3.248,
	BP86	1.513, 1.513	1.427, 1.429, 1.428,		3.257, 3.323,
			1.427, 1.427, 1.426,		3.426, 3.507
			1.426, 1.426, 1.444		
	B3LYP	1.511, 1.510, 1.516,	1.392, 1.398, 1.436,	6.587, 6.436, 6.288	3.255, 3.281,
		1.506, 1.506	1.419, 1.418, 1.418,		3.257, 3.323,
TZVP			1.419, 1.419, 1.420,		3.416, 3.467
			1.421, 1.420, 1.437		
	TPSSH	1.507, 1.507, 1.516,	1.400, 1.394, 1.441,	6.42, 6.502, 6.278	3.246, 3.254,
		1.510, 1.511	1.423, 1.425, 1.423,		3.322, 3.257,
			1.423, 1.423, 1.422,		3.421, 3.472
			1.422, 1.422, 1.440,		

Table.S5: Calculated structural parameters of Cs^+ ion-BPC6 complex at different level of DFT and basis set.

Method	C-C(Å)	C-O(Å)	0-0(Å)	M-O(Å)
BP86/SVP	1.515, 1.517, 1.525,	1.404, 1.408, 1.446,	5.798. 6.967, 5.123	2.382, 2.424,
	1.516, 1.518	1.428, 1.434, 1.415,		2.468, 3.980,
		1.424, 1.414, 1.415,		5.013, 4.265
		1.423, 1.448, 1.414		
B3LYP/SVP	1.513, 1.514, 1.521,	1.399, 1.403, 1.433,	5.676, 6.973, 5.079	2.362, 2.394,
	1.513, 1.513	1.422, 1.427, 1.407,		2.424, 3.979.
		1.416, 1.406, 1.407,		5.014, 4.193
		1.416, 1.406, 1.440		
TPSSH/SVP	1.515, 1.512, 1.521,	1.404, 1.400, 1.444,	6.937, 5.687, 5.080	2.398, 2.362,
	1.514, 1.512	1.410, 1.419, 1.411,		3.963, 2.438,
		1.410, 1.419, 1.411,		4.980, 4.189
		1.430, 1.424, 1.436		
BP86/TZVP	1.514, 1.511, 1.520,	1.409, 1.407, 1.453,	5.780, 6.971, 5.152	2.401, 2.439,
	1.512, 1.510	1.420, 1.429, 1.423,		2.489, 3.946,
		1.420, 1.430, 1.420,		4.186, 4.941
		1.439, 1.433, 1.447		
B3LYP/TZVP	1.511, 1.509, 1.517,	1.404, 1.401, 1.446,	6.97, 5.712, 5.146	2.428, 2.387,
	1.509, 1.508	1.412, 1.421, 1.414,		3.964, 2.474,
		1.412, 1.422, 1.412,		4.959, 4.156
		1.431, 1.426, 1.438		
TPSSH/TZVP	1.507, 1.509, 1.517,	1.402, 1.405, 1.442,	5.728, 6.944, 5.118	2.427, 2.387,
	1.509, 1.511	1.428, 1.434, 1.415,		2.478, 4.155,
		1.425, 1.416, 1.418,		4.922, 3.940
		1.424, 1.416, 1.449		

Table.S6: Calculated structural parameters of Na^+ ion -BPC6 complex at different level of DFT and basis set.

Table.S7: Calculated values of binding energy of Cs^+ and Na^+ ion with DCH18C6 and BPC6 at different M06 suite of density functionals using TZ2P basis set.

System	BE (kcal/mol)					
	DCH18C6			BPC6		
	M06-L	M06	M06-2X	M06-L	M06	M06-2X
Cs	-65.89	-70.88	-63.97	-79.86	-83.89	-75.34
Na	-88.19	-91.91	-95.05	-90.84	-92.74	-96.00

Table.S8: Calculated values of HOMO-LUMO energy of Cs^+ and Na^+ ion with DCH18C6 at different DFT functional and basis set.

System	HOMO-I			-LUMO (eV)		
		SVP			TZVP	
_	BP86	B3LYP	TPSSH	BP86	B3LYP	TPSSH
DCH18C6	5.99	7.70	7.18	5.71	7.28	6.77
Cs-DCH18C6	5.56	6.85	6.32	5.72	7.02	6.50
Na- DCH18C6	6.03	7.63	7.08	5.83	7.35	6.78
BPC	3.88	5.44	4.85	3.95	5.48	4.89
Cs-BPC	4.00	5.61	4.96	3.98	5.56	4.92
Na-BPC	4.01	5.64	4.97	3.98	5.61	4.93

Table.S9:	Calculated values of second order stabilization energies ${E_{ij}}^{\left(2\right)}$	using NBO	analysis as
implement	ed in ADF Package at B3LYP/TZ2P level of theory.		

System	Donor NBO	Acceptor NBO	E2(kcal/mol)
		*	
DCH18C6-Cs ⁺	LP (1) O21	LP*(1)Cs63	0.78
	LP (1) O22	LP*(1)Cs63	0.85
	LP (1) O23	LP*(1)Cs63	0.60
	LP (1) O24	LP*(1)Cs63	0.68
	LP (1) O25	LP*(1)Cs63	0.62
	LP (1) O26	LP*(1)Cs63	0.65
DCH18C6-Na ⁺			
	LP (1) O21	LP*(1)Na27	3.11
	LP (1) O22	LP*(1)Na27	3.54
	LP (1) O23	LP*(1)Na27	3.79
	LP (1) O24	LP*(1)Na27	3.25
	LP (1) O25	LP*(1)Na27	3.72
	LP (1) O26	LP*(1)Na27	3.99

Table.S10.: Calculated values of electron density and Laplacian of electron density at BP86/TZ2P level of theory using Bader's AIM calculation as implemented in ADF package.

Complex	BCP	λ1	λ2	λ3	ρ	$\nabla^2 \rho$	$\varepsilon = (\lambda 1 / \lambda 2) - 1$
DCH18C6-Cs ⁺	Cs-O1	-0.0112	-0.0103	0.0712	0.0132	0.048	0.087
	Cs-O2	-0.011	-0.010	0.0693	0.0127	0.048	0.100
	Cs-O3	-0.011	-0.010	0.072	0.0133	0.050	0.100
	Cs-O4	-0.0086	-0.0077	0.0574	0.0106	0.040	0.116
	Cs-O5	-0.0112	-0.0106	0.0702	0.0103	0.048	0.056
	Cs-06	-0.0073	-0.0067	0.0497	0.0093	0.032	0.089
DCH18C6- Na ⁺	Na-O1	-0.011	-0.0099	0.082	0.0095	0.0612	0.111
	Na-O2	-0.011	-0.011	0.087	0.0099	0.0644	0.000
	Na-O3	-0.0218	-0.0203	0.146	0.016	0.104	0.073
	Na-O4	-0.008	-0.0065	0.0612	0.0073	0.0464	0.230
	Na-O5	-0.0152	-0.0144	0.108	0.0119	0.0784	0.055
	Na-O6	-0.0199	-0.0185	0.139	0.015	0.100	0.075
BPC6- Cs^+	Cs-O1	-0.0078	-0.0068	0.052	0.0094	0.0368	0.147
	Cs-O2	-0.0078	-0.0068	0.0521	0.0095	0.0368	0.147
	Cs-O3	-0.0079	-0.0070	0.052	0.0095	0.0368	0.128
	Cs-O4	-0.005	-0.0048	0.035	0.0067	0.0256	0.041
	Cs-O5	-0.007	-0.0066	0.046	0.0088	0.032	0.166
	Cs-O6	-0.0020	-0.0015	0.0157	0.0031	0.0112	0.333
BPC6- Na ⁺	Na-O1	-0.020	-0.017	0.135	0.0144	0.096	0.176
	Na-O2	-0.0169	-0.0160	0.118	0.0129	0.080	0.056
	Na-O3	-0.022	-0.020	0.152	0.016	0.096	0.100

Diluents	Ligand	∆Gext		ΔΔGext	ΔΔΔGext
		(kcal/mol)		(kcal/mol)	(kcal/mol)
BMIMTF2N					
		Cs^+	Na^+		
Implicit	DCH18C6	2.28	-3.89	6.17	-10.14
_	BPC6	-0.081	3.88	-3.97	
Explicit	DCH18C6	-56.32(-10.62)	-48.36(-2.65)	-7.96	-10.14
_	BPC6	-58.69(-12.98)	-40.58(5.12)	-18.10	
octanol					
Implicit	DCH18C6	8.05	1.81	6.23	-10.21
_	BPC6	5.47	9.45	-3.98	
Explicit	DCH18C6	-50.55(-4.85)	-42.65(3.05)	-7.90	-10.21
-	BPC6	-53.13(-7.42)	-35.01(10.69)	-18.11	

Table.S11: Calculated values of free energy of extraction for Cs^+ and Na^+ ion using implicit and explicit solvation model in BMIM ionic liquid and octanol using optimized geometry in COSMO solvent of dielectric constant 10.3.

Values in the parentheses are calculated using cluster of water molecules.

Fig.S1.: Extraction of Cs^+ , Na^+ ions from neutral chloride and nitrate solution with BMIMTF2N IL. Feed of Cs: 100 ppm; Na: 100 ppm; O/A 1:1, Stirring time: 0.5 hrs; Bath:1:1 water ethanol (1) Dcs and D_{Na} in chloride salts; (2) Dcs and D_{Na} in nitrate salts.

П

I

Fig.S2: Optimized minimum energy structure of free (a) DCH18C6 and (b) BPC at (I) BP86/SVP, (II) BP86/TZVP and (III) B3LYP/TZVP level of theories. Green, red and grey sphere represent the C, O and H atom respectively.

Figure.S3: Optimized minimum energy structure of free BPC6 using TZVP basis set at different level of DFT (I) BP86 and (II) B3LYP. Key is same as in Fig.S2

DCH18C6-Cs⁺-B3LYP/SVP

Figure.S4: Optimized minimum energy structure of Cs^+ -DCH18C6 complex at different level of DFT and basis set.

Figure.S5: Optimized minimum energy structure of Cs^+ -DCH18C6 complex at TPSSH level of theory with different basis set.

Figure.S6: Optimized minimum energy structure of Na^+ -DCH18C6 complex at B3LYP level of theory with different basis set.

Figure.S7: Optimized minimum energy structure of Na^+ -DCH18C6 complex at TPSSH level of theory with different basis set.

Figure.S8: Optimized minimum energy structure of Cs^+ -DCH18C6 complex at B3LYP level of theory with different basis set.

Figure.S9: Optimized minimum energy structure of Cs^+ -DCH18C6 complex at TPSSH level of theory with different basis set.

Figure.S10: Optimized minimum energy structure of Na⁺-DCH18C6 complex at B3LYP level of theory with different basis set.

Figure.S11: Optimized minimum energy structure of Na⁺-DCH18C6 complex at TPSSH level of theory with different basis set.

Side view

(I)

Top view

Fig.S12: Optimized minimum energy structure of free (I) DCH18C6 and (II) BPC at TPSSH/TZVP level of theory.

Side view

top view

II

I

Fig.S13: Optimized minimum energy structure of Cs^+ and Na^+ complex of DCH18C6 using TPSSH/TZVP level of theory.

Side view

top view

Fig.S14: Optimized minimum energy structure of Cs^+ and Na^+ complex of TPSSH/TZVP level of theory.

The reason for the close values of $\Delta\Delta G$ and $\Delta\Delta\Delta G$ in IL and octanol can be followed using the below equations.

For e.g implicit

Octanol solvent

 $Cs^{+}_{(aq)} + L1_{(org)} \longrightarrow Cs^{+}L1_{(org)} (\Delta G1_{ext})$ (1) $Na^{+}_{(aq)} + L1_{(org)} \longrightarrow Na^{+}L1_{(org)} (\Delta G2_{ext})$ (2) L1=DCH18C6 $\Delta\Delta Gext=(\Delta G1_{ext}-\Delta G2_{ext})$ (1)-(2) leads to $L1Na^{+}_{(org)} + Cs^{+}_{(aq)} \longrightarrow L1Cs^{+}_{(org)} + Na^{+}_{(aq)}$ IL solvent $Cs^{+}_{(aq)} + IL^{+}_{(org)} + L1_{(org)} \longrightarrow Cs^{+}L1_{(org)} + IL^{+}_{(aq)} (\Delta G1_{ext})$ (1) $Na^{+}_{(aq)} + IL^{+}_{(org)} + L1_{(org)} \longrightarrow Na^{+}L1_{(org)} + IL^{+}_{(aq)} (\Delta G2_{ext})$ (2) L1=DCH18C6 $\Delta\Delta Gext=(\Delta G1_{ext}-\Delta G2_{ext})$ (1)-(2) leads to

 $L1Na^{+}_{(org)} + Cs^{+}_{(aq)} \longrightarrow L1Cs^{+}_{(org)} + Na^{+}_{(aq)}$

 $\Delta G1_{ext}$ and $\Delta G2_{ext}$ for both octanol and IL solvent are different this is due to different equations involved. Whereas $\Delta\Delta Gext$ is very close because of identical exchange and close dielectric constant for both octanol (10.3) and BMIMTF2N (11.6). Similarly, the $\Delta\Delta\Delta G$ ($\Delta\Delta\Delta G_{ext} = \Delta\Delta G[L2] - \Delta\Delta G[L1]$) can be shown to be very close.