## **Electronic Supplementary Information**

# "Doping-induced Detection and Determination of Propellant Grade Hydrazines by Kinetic Spectrophotometric Method based on Nano and Conventional Polyaniline using Halide ion Releasing Additives"

by

Selvakumar Subramanian<sup>\*, 1</sup>, Somanathan Narayanasastri <sup>2</sup> and Audisesha Reddy Kami Reddy <sup>1</sup>

<sup>1</sup>Chemical Testing Lab, Solid Propellant Space Booster Plant, SDSC-SHAR Centre, Indian Space Research Organization (ISRO), Sriharikota 524124, Andhra Pradesh, India Tel.: +91-8623-223013; fax: +91-8623-225154 E-mail: selvakumar.s@shar.gov.in , kumarreka@hotmail.com

<sup>2</sup> Polymer Division, Central Leather Research Institute (CLRI), Council of Scientific and Industrial Research (CSIR), Adyar, Chennai 600020, Tamil Nadu, India

\* To whom correspondence should be addressed.

#### 1. Chemical Structures

Chemical Structures of Hydrazine, Monomethylhydrazine and Unsymmetrical dimethylhydrazine are given as follows. For Hydrazine hydrate, water molecule is present in the hydrated form of Hydrazine.



#### 2. Characterization

Spectrophotometric measurements were performed on a UV–VIS spectrophotometer (Techcomp-8500) in the wavelength range of 200–900 nm with 1 cm quartz cells thermo stated by a thermostatic water bath (Shimadzu-TB 85) at 50 °C and 60 °C. The morphology of conventional and nano Pani was characterized by using the field emission scanning electron microscopy (FESEM, SIRION-Netherland). Wide-angle X-ray diffraction (WAXD) for sample powders was carried out at room temperature by using a Rigaku D / max 2500 VPC X-ray diffractometer with Cu-K<sub>a</sub> irradiation and scan speed of 5 °C. All the kinetic data were obtained from the plots using the program Microcal Origin 7.0. A stopwatch was applied to record the reaction time. *N*-methyl-2-pyrrolidone was used as a solvent to prepare sample solutions of Pani.

### 3. Characterization by FT-IR and UV- Vis Spectras :

FT-IR spectra of the conventional Pani-EB in NMP shows five peaks, at 1585 cm<sup>-1</sup> (C=N stretching of the quinoid ring), at 1494 cm<sup>-1</sup> (stretching of the benzenoid ring), at 1310 cm<sup>-1</sup> (C-N stretching of the benzenoid ring), at 1162 cm<sup>-1</sup> (in-plane C-H bending motion of the quinoid ring) and at 829 cm<sup>-1</sup> (out-of-plane bending of C-H bond in the aromatic ring). The peaks identified are consistent with previously published data<sup>1</sup>. FT-IR spectra of the nano Pani-EB taken in KBr Pellet form also shows these main five peaks (1578, 1492, 1295, 1147 & 824 cm<sup>-1</sup>). Slight variation in peak positions of samples taken in KBr pellet and NMP medium is due to solvent (NMP) effect.



Fig.S1 FT-IR spectra of conventional Pani in NMP medium

Fig.S2 FT-IR spectra of of nano Pani in KBr Pellet form

UV–Vis spectroscopy analysis of these two forms shows two absorption peaks at 326 and 626 nm (Fig.6 of manuscript) which can be assigned to the  $\pi$ – $\pi$ \* transition of the benzenoid ring and the exciton absorption of the quinoid ring respectively. The peaks identified are consistent with previously published data<sup>1</sup>.



Fig.S3 FT-IR spectra-Hydrazine effect over Pani-CDNB in NMP medium

FT-IR spectra of Pani-ES (taken in NMP medium) formed by the release of HCl (Figure S3) shows new peaks at 1154 and 854 cm<sup>-1</sup>. Peak at 1154 cm<sup>-1</sup> indicates the broken symmetry mode of the quinoid ring. Peak at 854 cm<sup>-1</sup> (out of plane bending of the aromatic ring) indicates the change from the quinonoid structure to the benzenoid structure upon doping<sup>1</sup>.



Fig. S4. Percent absorbance change-Time curves for nano and conventional Pani – CDNB systems for the addition of hydrazine at different concentrations (at 50 °C & 60 °C)



Fig.S5. Calibration graphs of percent absorbance change recorded at 30 min.Vs concentration of hydrazine at 50 °C & 60 °C



**Fig. S6.** Percent absorbance change-Time curves for nano and conventional Pani – CDNB systems for the addition of MMH at different concentrations (at 50 °C and 60 °C)



Fig.S7. Calibration graphs of percent absorbance change recorded at 30 min. Vs concentration of MMH at 50 °C & 60 °C



Fig.S8. Percent absorbance change-Time curves for nano and conventional Pani – CDNB systems for the addition of UH25 at different concentrations (at 50 °C and 60 °C)



Fig.S9. Calibration graphs of percent absorbance change recorded at 30 min. Vs concentration of UH25 at 50 °C and 60 °C



Fig.S10. Calibration graphs of percent absorbance change recorded at 30 min. Vs concentration of UH25 at 50 °C and 60 °C

| Table S1 S | Statistical | data obtained | from fixed | l time me | ethod (1 | <b>5 min.)</b> : | for the a | ddition of |
|------------|-------------|---------------|------------|-----------|----------|------------------|-----------|------------|
|            |             | hydrazine, M  | IMH and U  | JH25 @ 5  | 50°C & ( | 60°C             |           |            |

| Concentration            | tration Hydrazine |             | MMH   |             | UH25  |             |  |  |
|--------------------------|-------------------|-------------|-------|-------------|-------|-------------|--|--|
| (M)                      |                   |             |       |             |       |             |  |  |
| Nano Pani @ 50°C         |                   |             |       |             |       |             |  |  |
|                          | Slope             | Correlation | Slope | Correlation | Slope | Correlation |  |  |
|                          |                   | Coefficient |       | Coefficient |       | Coefficient |  |  |
| 0.004                    | 2.89              | 0.9901      | 4.02  | 0.9947      | 11.09 | 0.9943      |  |  |
| 0.01                     | 5.49              | 0.9973      | 7.82  | 0.9948      | 17.16 | 0.9922      |  |  |
| 0.02                     | 9.17              | 0.9958      | 10.19 | 0.9993      | 23.5  | 0.9919      |  |  |
| 0.04                     | 16.64             | 0.9984      | 16.73 | 0.9858      | 24.69 | 0.977       |  |  |
| 0.1                      | 18.26             | 0.9959      | 23.39 | 0.9173      | 26.41 | 0.8988      |  |  |
| Nano Pani @ 60°C         |                   |             |       |             |       |             |  |  |
| 0.004                    | 5.95              | 0.99        | 9.77  | 0.9807      | 13.88 | 0.9996      |  |  |
| 0.01                     | 10                | 0.9816      | 15.41 | 0.9812      | 18.57 | 0.9997      |  |  |
| 0.02                     | 15.31             | 0.9988      | 20.05 | 0.9767      | 24.01 | 0.9974      |  |  |
| 0.04                     | 21.77             | 0.9733      | 24.85 | 0.9691      | 26.97 | 0.9321      |  |  |
| 0.1                      | 22.37             | 0.9663      | 27.83 | 0.8841      | 26.88 | 0.9043      |  |  |
| Conventional Pani @ 50°C |                   |             |       |             |       |             |  |  |
| 0.004                    | 2.87              | 0.9949      | 3.34  | 0.9961      | 8.66  | 0.9987      |  |  |
| 0.01                     | 3.05              | 0.9984      | 6.99  | 0.9936      | 16.84 | 0.9973      |  |  |
| 0.02                     | 9.08              | 0.9952      | 12.89 | 0.9976      | 20.42 | 0.9994      |  |  |
| 0.04                     | 13.59             | 0.9708      | 15.96 | 0.9943      | 20.49 | 0.9938      |  |  |
| 0.1                      | 16.68             | 0.8883      | 22.26 | 0.9697      | 23.1  | 0.9591      |  |  |
| Conventional Pani @ 60°C |                   |             |       |             |       |             |  |  |
| 0.004                    | 5.75              | 0.9377      | 8.45  | 0.9778      | 9.76  | 0.9802      |  |  |
| 0.01                     | 6.54              | 0.9325      | 13.92 | 0.9825      | 16.43 | 0.9907      |  |  |
| 0.02                     | 14.19             | 0.9934      | 20.11 | 0.9726      | 20.73 | 0.9966      |  |  |
| 0.04                     | 19.2              | 0.9897      | 25.64 | 0.929       | 23.48 | 0.9877      |  |  |
| 0.1                      | 21.13             | 0.9295      | 30.19 | 0.7385      | 25.47 | 0.946       |  |  |

# Table S2 Determination of hydrazine, MMH and UH25 in tap water by nano &<br/>conventional Pani systems @ 50°C (n=4)

|                        | Hydrazine         |          | M                 | MH       | UH25              |          |
|------------------------|-------------------|----------|-------------------|----------|-------------------|----------|
| Pani                   | Added*<br>(mg/ml) | RSD<br>% | Added*<br>(mg/ml) | RSD<br>% | Added*<br>(mg/ml) | RSD<br>% |
| Nano – Trial 1         | 3.3               | 1.1      | 24.2              | 0.7      | 60.3              | 1.5      |
| Nano – Trial 2         | 1.8               | 1.2      | 47.6              | 1.2      | 30.5              | 1.2      |
| Conventional – Trial 1 | 3.4               | 0.8      | 23.8              | 0.9      | 30.1              | 1.1      |
| Conventional – Trial 2 | 1.9               | 0.9      | 46.6              | 0.8      | 59.5              | 0.9      |

\* mg/ml of respective hydrazine added to the respective Pani – CDNB system n = No. of determinations for particular concentrations tried.

## **References:**

1. L. Trachiwin. P.Kiattibutr, L.Ruangchuay, A.Sirivat and J. Schwank, Synthetic Met., 2002, 129, 303.