Supporting Information

Bilayer Interaction and Protein Kinase C-C1 Domain binding studies of

Kojic Acid Esters

Rituparna Borah, Dipjyoti Talukdar, Sukhamoy Gorai, Dipankar Bain and Debasis

Manna*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India

*Corresponding author: Tel: 03 61258 2325; Fax: 03 61258 2349

E-mail: <u>dmanna@iitg.ernet.in</u>

Table of Content

Sl. No	Content	Page	
(I)	Characterization of the Synthesized compounds	S2	
(II)	Fluorescence intensity measurements of 1-naphthol in the presence of DPPC vesicle.	S 3	
(III)	Effect of compound 4 on the phase transition temperature of DPPC vesicle.		
(IV)	Representative quenching plot of PKC0-C1b fluorescence by ligand.	S4	
(V)	Binding isotherms of ligands with PKCδ- and PKCθ-C1b subdomains.	S5	
(VI)	Anisotropy values of the ligands in the presence and absence of the PKC δ - and PKC θ -C1b proteins at room temperature.	S5	
(VII)	Representative protein-to-membrane FRET assessment under	S 6	
	liposomal environment.		

(I) Characterization of the synthesized compounds:

2-(hydroxymethyl)-4H-pyran-4-one octanoate (1): ¹H NMR (400 MHz, CDCl₃) δ 7.83 (S, 1H, ArH), 6.47 (S, 1H ArH), 4.86 (S, 2H, -OCH₂), 2.38 (t, 2H, J = 8 Hz, -OCH₂ (ester)) 1.65-1.61 (m, 2H, -CH₂), 1.27-1.23 (m, 8H), 0.84 (t, 3H, J = 5.6 Hz, -CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 174.2, 172.9, 163.3, 146.1, 138.2, 111.3, 61.4, 29.8, 29.3, 29.1, 29.0, 25.0, 14.3; HRMS (ESI) Calcd for C₁₄H₂₁O₅ [M+H]⁺ 268.1311, Found: 269.1387.

2-(hydroxymethyl)-4H-pyran-4-one laurate (2): ¹H NMR (400 MHz, CDCl₃) δ 7.83 (S, 1H, ArH), 6.52 (S, 1H ArH), 4.45 (S, 2H, OCH₂), 2.55 (t, 2H, J = 8 Hz, -OCH₂ (ester)) 1.70-1.67 (m, 2H, -CH₂), 1.35-1.22 (m, 16H), 0.84 (t, 3H, J = 6.8 Hz, -CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 173.4, 171.2, 168.4, 148.0, 141.2, 113.3, 60.9, 33.8, 32.1, 29.9, 29.8, 29.6, 29.5, 29.4, 29.2, 24.9, 22.9, 14.3; HRMS (ESI) Calcd for C₁₈H₂₉O₅ [M+H]⁺ 325.2016, Found: 325.2020.

2-(hydroxymethyl)-4H-pyran-4-one palmitate (3): ¹H NMR (400 MHz, CDCl₃) δ 7.84 (S, 1H, ArH), 6.53 (S, 1H, ArH), 4.44 (S, 2H, -OCH₂), 2.56 (t, 2H, J = 8 Hz, -OCH₂(ester)) 1.7-1.67 (m, 2H, CH₂), 1.36-1.23 (m, 24H), 0.85 (t, 3H, J = 8 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 171.3, 169.0, 148.1, 141.2, 113.2, 60.83, 33.87, 32.16, 29.93, 29.89, 29.85, 29.68, 29.60, 29.47, 29.23, 24.94, 22.93, 14.37; HRMS (ESI) Calcd for C₂₂H₃₇O₅ [M+H]⁺ 381.2636, Found: 381.2640.

2-(hydroxymethyl)-4H-pyran-4-one stearate (4): ¹H NMR (400 MHz, CDCl₃) δ 7.82 (S, 1H, ArH), 6.53 (S, 1H, ArH), 4.45 (S, 2H, -OCH₂), 2.56 (t, 2H, J = 8 Hz, -OCH₂(ester)) 1.71-1.68 (m, 2H, -CH₂), 1.36-1.23 (m, 28H), 0.85 (t, 3H, J = 6.8 Hz, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 171.2, 168.4, 148.0, 141.2, 113.3, 60.91, 33.9, 32.1, 29.9, 29.8, 29.7, 29.6, 29.4, 29.2, 24.9, 22.9, 14.3; HRMS (ESI) Calcd for C₂₄H₄₁O₅ [M+H]⁺ 409.2949, Found: 409.2975.

2-(hydroxymethyl)-4H-pyran-4-one oleate (5): ¹H NMR (400 MHz, CDCl₃) δ 7.86 (S, 1H, ArH), 6.56 (S, 1H ArH), 5.34 (m, 2H, -CH=CH-), 4.47 (S, 2H, -OCH₂), 2.58 (t, 2H, J = 8 Hz, -OCH₂ (ester)), 2.0-1.99 (m, 4H), 1.73-1.67 (m, 2H, -CH₂), 1.38-1.19 (m, 20H), 0.87 (t, 3H, J = 6.8 Hz, -CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 171.1, 168.8, 148.0, 141.2, 130.2, 129.9, 113.2, 60.8, 33.8, 32.1, 29.95, 29.9, 29.7, 29.3, 29.27, 29.15, 28.6, 27.4, 26.49, 25.4, 24.9, 22.7, 14.3; HRMS (ESI) Calcd for C₂₄H₃₉O₅ [M+H]⁺ 407.2792, Found: 407.2849.

Figure S1: Size distribution of the compounds in aqueous solution (PBS buffer pH 7.0) at 25 °C for (A) 120 μ M of **4** at *t* = 5 min, and (B) 150 μ M of 5 at *t* = 5 min.

Figure S2: Fluorescence intensity measurements of 1-naphthol in the presence of DPPC vesicle. Emission spectra of 1-naphthol ($\lambda_{ex} = 290$ nm) with increasing concentration of kojic acid ester **5** at (A) 30 ^oC (SG phase) and (B) 53 ^oC (LC phase) in DPPC vesicles. Change in NpOH* fluorescence intensity (at 370 nm) with the increase in compound **5** concentration at 30 ^oC and 53 ^oC in DPPC vesicles. [DPPC] = 0.2 mM, [1-napthol] = 4 μ M.

Figure S3: Effect of compound **4** on the phase transition temperature of DPPC vesicle. Change in NpOH* fluorescence intensity with the increase in compound **4** concentration at different temperatures in DPPC vesicles. $\lambda_{ex} = 290$ nm, $\lambda_{em} = 370$ nm, [DPPC] = 0.2 mM, [1-napthol] = 4 μ M.

(II) Figure S4: Representative quenching plot of PKC θ -C1b fluorescence by ligand. Addition of increased concentration of compound 3 (0-22 μ M) to PKC θ C1b (1 μ M) quenched the intrinsic fluorescence intensity.

(III) Figure S5: Binding isotherms of ligands with PKC θ -C1b subdomains. Representative plot of fluorescence intensity of PKC θ -C1b subdomains (1 μ M) in buffer (20 mM Tris, 160 mM NaCl, 50 μ M ZnSO₄, pH 7.4) in the presence of varying concentration of compounds 1-5, where F and F₀ are fluorescence intensity in the presence and absence of the ligands, respectively. The solid lines are nonlinear least squares best fit curves

Compound	ΡΚϹδ Ϲ1b	РКСӨ С1ь
buffer ^b	0.0746 (0.00070)	0.0682 (0.02220)
$DAG_8^{\ c}$	0.1493 (0.06160)	0.2372 (0.07740)
1	0.1414 (0.04490)	0.2234 (0.08780)
2	0.2406 (0.02404)	0.2967 (0.03950)
3	0.2415 (0.01165)	0.2502 (0.01060)
4	0.2589 (0.01270)	0.3016 (0.05243)
5	0.3206 (0.05246)	0.3192 (0.07474)

(IV) Table S1. Anisotropy^{*a*} values of the ligands in the presence and absence of the PKC δ - and PKC θ -C1b proteins at room temperature.

^{*a*}Values in parenthesis indicate standard deviations.

^{b)}Protein, 1 µM in buffer (20 mM Tris, 160 mM NaCl, 50 µM ZnSO₄, pH 7.4).

^{c)}Ligands, 10 µM; protein, 1 µM in buffer (20 mM Tris, 160 mM NaCl, 50 µM ZnSO₄, pH 7.4)

(V) Figure S6: Representative protein-to-membrane FRET assessment under liposomal environment. Addition of increased concentration of DAG_8 (0 - 80 µM) to PKC δ -C1b sundomain (1 µM) bound to the active liposome (PC/PE/dPE/ligand (75/15/5)) of compound 5 decreases the FRET signal at 495 nm. All the measurements were performed in 20 mM Tris, pH 7.4 containing 160 mM NaCl and 50 µM ZnSO₄.