Supporting Information

Solution Plasma Synthesis Process of Tungsten Carbide on N-doped Carbon Nanocomposite with Enhancing Catalytic ORR Activity and Durability

Dae-wook Kim,*a Oi Lun Li, b Panuphong Pootawang, b Nagahiro Saitoa,b,c

^a Department of Materials, Physics and Energy Engineering, Nagoya University, 464-8603, Furo-cho, Chikusa-ku, Nagoya, Japan.
^b Green Mobility Collaborative Research Center, Nagoya University, 464-8603, Furo-cho, Chikusa-ku, Nagoya, Japan.
^c EcoTopia Science Institute, Nagoya University, 464-8603, Furo-cho, Chikusa-ku, Nagoya, Japan

Fig. S1 Chromatograms of the discharged solution (benzene) by SPP with chemical formulas.

Group	Compound				
1	Cyclohexane, methyl-	Cyclopentane, ethyl-			
	Cyclohexane, 3-methyl-	Toluene			
2	Ethylbenzene	Phenylethyne			
	Styrene				
3	Indene	1,4-Diethynylbenzene			
	Azulene				
4	Naphtalene	1,4-Diethynylbenzene			
5~6	Biphenyl	Naphtalene, 2-ethenyl-			
	Biphenylene	Acnaphthene			
	Acenaphthylene	Styrene			
7~8	Benzene, 1,1'-(1,2-cyclobutanediyl)bis,trans-	Benzene, 3-cyclohexen-1-yl			
	Fluorene	1H-Phenalene			
	Anthracene	Phenanthrene			
	Diphenylacetylene	[2,2]Paracyclophane			
	Naphthalene, 1,2,3,4-tetrahydro-2phenyl-	Cyclobutan, 1,3-diphenyl-trans-phane			
	Benzene, 3-cyclohexen-1-yl-				
9~11	Anthracene, 9-methyl-	Phenanthrene, 2-methyl-			
	Anthracene	Benzene, 1,1'-(1,2-cyclobutanediyl)bis-,cis-			
	5H-Benzocycloheptene, 6,7-dihydro-	Benzene, 1,3-hexadienyl-			
	1,4-Dihydronaphthalene	Benzene, 1,1'(1,3-butadiyne-1,4-diyl)bis-			
	Fluoranthene	Pyrene			
	Triphenylene	Pyrene, 4,5-dihydro-			
	Annulene	Benzo[ghi]fluoranthene			
	Benzo[c]phenanthrene	Cyclopenta[cd]pyrene			
	Benzo[a]anthracene	Chrysene			
	Cyclopenta[cd]pyrene	Cyclopenta[cd]pyrene, 3,4-dihydro-			

Table S1 Compound name corresponding to the Chromatograms (Fig. S1)

Fig. S2 Chromatograms of the discharged solution (pyrrole) by SPP with chemical formulas.

Group	Compound				
1	1H-Pyrrole, 3-methyl-	1H-Pyrrole, 2-methyl-			
	1H-Pyrrole, 1-methyl-				
2	Pyridine	Pyridine, 2-methyl-			
	2-Ethynylpyridine	Bezonitrile			
3	4-Pyridinecarbonatrile	3-Pyridinecarbonatrile			
	2-Pyridinecarbonatrile	Benzenemathanimine			
	1H-Benzotriazole, 5-methyl-				
4	Cinnoline	quinoxaline			
	Phthalazine	1H-Benzotriazole, 5-methyl-			
5~7	5H-1-Pryydine, 6,7-dihydro-	Pyrazolo[1,5-A]pyridine			
	4-Cyancinnoline	Benzene, 3-cyclohexen-1-yl			
	Pyrido[3,2-f]quinoxaline	4-Cyancinnoline			
	2,3-Cycloheptenopyridine	2,3'-Dipyridyl			
	Pyrido[3,2-f]quinoxaline				
8~10	2,2'-Bipyridine	2,4'-Bipyridine			
	4,4'-Bipyridine	3,3'-Bipyridine			
	Benzo[c]cinnoline	Benzo[h]cinnoline			
	Benzo[h]quinazoline	Pteridine, 2-methyl-			
	Quinazoline-4-carbonitrile	1H-indole-3-acetonitrile			
11	Quinoxalino[2,3-c]cinnoline	Pteridine, 2-methyl-			
	Quinoline, 2-ethyl-3-methyl-	Isoquinoline, 1-ethyl-			
	Benzo[h]cinnoline				

Table S2Compound name corresponding to the Chromatograms (Fig. S2)

Fig. S3 XPS spectra (a) C1s, (b) W4f, (c) N1s

Fig. S3(a) shows C1s spectra of the WC/C nanocompsite with and without nitrogen contents. The main peak of t he C1s spectra at 284.4 and 284.8 eV, respectively, which are originated from sp2 C-C bond in carbon structure [1]. In case of WC/N-C, the main peak was positively shifted, and which is promoted by presence of nitrogen co mponents in the carbon matrix. [2]. On the W4f spectra, the results are quite similar to each others. It show only WC related peak at 34.4 and 32.1 eV without the effect of the support materials. The N1s spectra of WC/N-C, ty pical peaks of 4 type of nitrogen bonding (pyridinic-N (398.3 eV), pyrrolic-N (399.8 eV), graphtic-N (401.1 eV), and oxidized-N (402.2 eV)) were observed. From the obtained results, it assumes that the nitrogen components were well incorporated in the carbon matrix.

Crystallite size (nm)							Mean crystal	lite size (nm)		
Plane –	WC _{1-X} (As-prepared)		W0 (Heat-1	C _{1-X} treated)		WC (Heat-treated)		WC _{1-X} (As-prepared)		WC & WC _{1-\times} (Heat-treated)	
	WC/C	WC/N- C	WC/C	WC/N- C	Plane	WC/C	WC/N- C	WC/C	WC/N- C	WC/C	WC/N- C
(111)	4.17	4.03	7.78	8.37	(001)	9.49	9.81	4.58	4.56	6.78	6.76
(200)	4.30	4.51	6.15	5.76	(100)	6.52	5.60				
(220)	5.57	5.42	6.67	5.99	(101)	5.54	5.90				
(311)	4.28	4.32	6.98	7.79	(110)	5.25	6.16				
			-		(111)	6.72	5.32				

Table S3 Calculated particle size of WC nanoparticles from XRD

Reference

 S. Maldonado, S. Morin, K. J. Stevenson, *Carbon*, 2006, 44, 1429–1437.
P. Ayala, A. Grüneis, T. Gemming, B. Büchner, M. H. Rümmeli, D. Grimm, *Chem Mater.*, 2007, 19, 6131–6 137.