Supplementary Information

Degradation of methyl salicylate through Cl initiated atmospheric oxidation - A theoretical study

A. Mano Priya and L. Senthilkumar^{*} Department of Physics, Maruthamalai Road, Bharathiar University, Coimbatore-641046, Tamil Nadu, INDIA *Corresponding Author Email: <u>lsenthilkumar@buc.edu.in</u>

Table S1 The selected geometrical parameters (bond length R, in Å, bond angle, θ and dihedral angle, ϕ in degrees) on the potential energy surface of the favourable reaction path calculated at M06-2X/6-311++G(d,p) level of theory.

Geometrical	M06-2X/6-311++G(d,p)						
parameters							
	MeSA+Cl	TS1	I1				
R(C3-H16)	1.082	1.083	6.640				
R(H16-C120)	3.775	3.772	1.296				
θ(C3-H16-Cl20)	85.3	70.7	167.8				
	I1+O ₂	-	I2				
R(C3-O16)	5.288	Barrierless	1.399				
R(O16-O20)	1.188		1.309				
θ(C3-O16-O20)	99.7		112.3				
	I2+NO	TS4	I3				
R(N21-O22)	1.156	1.164	1.192				
R(O20-N21)	1.425	1.390	1.185				
θ(C3-O16-O20)	107.9	115.7	86.3				
φ(C3-O16-	-120.6	-1.37	-169.9				
O20- N21)							

Stationary point	η	1/η	ω	Δn^*
MeSA+Cl	4.389	0.227	2.095	0.739
TS1	3.650	0.273	2.637	
I 1	3.681	0.271	2.720	
I1+O ₂	4.279	0.233	2.340	1 . 1
I2	3.633	0.275	3.023	barrieriess
I2+HO ₂	4.848	0.206	2.265	1.655
TS2	3.193	0.313	3.630	1.655
P1	3.615	0.276	2.850	
I2+NO ₂	4.492	0.222	2.294	1.007
TS3	3.405	0.293	3.655	1.087
P2	3.564	0.280	3.066	
I2+NO	3.452	0.289	3.166	0.120
TS4	3.591	0.278	3.072	-0.139
I3	3.176	0.314	2.824	
I3+O ₂	2.086	0.479	4.300	*
P3	2.494	0.400	6.619	

Table S2 The global reactivity parameters, hardness (η) , softness $1/\eta$, electrophilicity index (ω) , activation hardness (Δn^*) in eV calculated at M06-2X/6-311++G(d,p) level of theory.

*Indicates structure not converged

 Δn^* has been calculated for pre-reactive reactants

 η has been calculated by the equation (9) given in the text above

Reaction	Homo	Lumo	ΔE
MeSA	-7.916	-0.661	7.254
TS1	-8.038	-0.737	7.301
I1	-8.156	-0.794	7.362
O_2	-9.353	-3.239	6.114
I2	-8.320	-1.053	7.267
HO_2	-10.750	-0.293	10.457
TS2	-8.008	-1.622	6.386
P1	-8.156	-0.924	7.231
NO_2	-10.038	-1.156	8.882
TS3	-8.402	-1.592	6.810
P2	-8.240	-1.111	7.129
NO	-7.943	-1.416	6.527
TS4	-8.289	-1.106	7.182
13	-7.411	-1.059	6.352
P3	-8.242	-3.252	4.989

Table S3 The global reactivity parameters, Homo, lumo, energy gap (ΔE) in eV calculated at M06-2X/6-311++G(d,p) level of theory.

Stationay point	Bond parameter	Bonding orbital BD		Anti-bond Bl	Anti-bonding orbital BD*		
-		f^+_{nbo}	f ⁻ nbo	f^+_{nbo}	f ⁻ nbo		
MeSA	C3-H16	-0.988	0.988	-0.005	0.006	Electrophilic	
	C3-C2	-0.988	0.985	-0.011	0.012	Electrophilic	
	C3-C4	-0.989	0.987	-0.006	0.007	Electrophilic	
TS1	C3-H16	0.988	-0.987	0.006	-0.004	Nucleophilic	
	C3-C2	0.987	-0.991	0.011	-0.011	Nucleophilic	
	C3-C4	0.988	-0.991	0.007	-0.005	Nucleophilic	
I1	C3-C2	0.979	-0.995	0.010	-0.021	Nucleophilic	
	C3-C4	0.983	-0.996	0.006	-0.010	Nucleophilic	
O_2	O16-O20	-1.000	1.000	0	0	Inactive	
			(electrophilic)				
I2	C3-C2	0.988	-0.988	0.023	-0.019	Nucleophilic	
	C3-C4	0.990	-0.986	0.012	-0.008	Nucleophilic	
	C3-O16	0.992	-0.997	0.022	-0.022	Nucleophilic	
	O16-O20	0.989	-0.997	0.000	-0.018	Nucleophilic	

Table S4 NOFFs (unit in electrons) of methyl salicylate with Cl radical of initial reaction and peroxy radical with their reactivities calculated at M06-2X/6-311++G(d,p) level of theory.

Electrophilic- This captures the ability of the NBO to donate electrons

Nucleophilic- This captures the ability of the NBO to accept electrons

Inactive- It means that orbital prefers to neither accept nor donate electrons

Table	S5 NO	FFs (un	it in	electrons)	of	peroxy	radical	with	HO ₂ ,	NO ₂ ,	NO	radical	and	their
	corres	ponding	inter	mediates, tr	ans	istion st	ate and p	oroduc	cts with	n their	react	tivities ca	alcula	ted at
	M06-2	X/6-311+	-+G(d	i,p) level of	the	ory.								

Reaction	Bond	Bonding orbital BD		Anti-bond	ing orbital	Reactivity	
	parameter	f + .	f	БІ f ⁺ .	∫" f		
HO ₂	H21-O22	<u> </u>	-0 998	0.024	<u> </u>	Nucleophilic	
	022-023	0 998	-0 999	0.000	-0.001	Nucleophilic	
TS2	C3-C2	-0.983	0.982	-0.015	0.015	Electrophilic	
	C3-C4	-0.989	0.987	-0.010	0.011	Electrophilic	
	C3-O16	-0.997	0.996	-0.017	0.018	Electrophilic	
	O16-O20	-0.994	0.995	-0.010	0.008	Electrophilic	
	022-023	-0.979	0.975	-0.008	0.008	Electrophilic	
P1	C3-C2	-0.988	0.985	-0.020	0.019	Electrophilic	
	C3-C4	-0.989	0.987	-0.011	0.012	Electrophilic	
	C3-O16	-0.995	0.996	-0.012	0.012	Electrophilic	
	O16-O20	-0.990	1.004	-0.008	0.021	Electrophilic	
	O20-H21	-1.000	1.001	-0.003	0.004	Electrophilic	
NO_2	O22-N21	0.999	-0.992	0.023	-0.027	Nucleophilic	
_	N21-O23	0.999	-0.981	0.023	-0.006	Nucleophilic	
TS3	C3-C2	-0.986	0.984	-0.395	0.395	Electrophilic	
	C3-C4	-0.990	0.988	-0.011	0.012	Electrophilic	
	C3-O16	-0.996	0.996	-0.015	0.014	Electrophilic	
	O16-O20	-0.985	0.991	-0.031	0.037	Electrophilic	
	O22-N21	-0.996	0.996	-0.032	0.026	Electrophilic	
	N21-O23	-0.998	1.000	-0.035	0.025	Electrophilic	
	O22-O23	-0.993	0.995	-0.123	0.114	Electrophilic	
P2	C3-C2	-0.986	0.982	-0.017	0.017	Electrophilic	
	C3-C4	-0.990	0.987	-0.011	0.012	Electrophilic	
	C3-O16	-0.995	0.995	-0.016	0.015	Electrophilic	
	O16-O20	-0.992	0.994	-0.017	0.021	Electrophilic	
	O22-N21	-0.993	0.995	-0.147	0.134	Electrophilic	
	N21-O23	-0.998	0.997	-0.517	0.513	Electrophilic	
NO	N21-O22	0	-1	0	0	Inactive	
TS4	C3-C2	-0.987	0.985	-0.021	0.020	Electrophilic	
	C3-C4	-0.990	0.987	-0.012	0.012	Electrophilic	
	C3-O16	-0.995	0.996	-0.016	0.015	Electrophilic	
	O16-O20	-0.988	0.999	-0.029	0.044	Electrophilic	
	N21-O22	-0.999	1.000	-0.078	0.100	Electrophilic	
	O20-N21	-0.994	0.999	-0.070	0.061	Electrophilic	
13	C3-C2	0.982	-0.991	0.037	-0.035	Nucleophilic	
	C3-C4	0.987	-0.993	0.024	-0.021	Nucleophilic	
	C3-O16	0.996	-0.997	0.004	-0.005	Nucleophilic	
P3	C3-C2	0.979	-0.995	0.010	-0.021	Nucleophilic	
	C3-C4	0.983	-0.996	0.006	-0.010	Nucleophilic	

Electrophilic- This captures the ability of the NBO to donate electrons **Nucleophilic-** This captures the ability of the NBO to accept electrons **Inactive-** It means that orbital prefers to neither accept nor donate electrons

Table S6	Topological analysis of reactants, transition states, intermediates and products of methyl
	salicylate with Cl radical calculated at M06-2X/6-311++G(d,p) level of theory (values are in
	atomic units).

Reaction	Bond	$\rho(r)$	$\nabla^2 \rho(r)$	ε	V(r)	G(r)	H(r)
	parameter	, , ,	· <i>P</i> (<i>i</i>)				
MeSA	C3-H16	0.2802	-0.9620	0.0205	-0.3160	0.0377	-0.2782
	C3-C2	0.3096	-0.8778	0.2156	-0.4202	0.1003	-0.3198
	C3-C4	0.3116	-0.8724	0.2094	-0.4291	0.1055	-0.3236
TS1	C3-H16	0.2806	-0.9655	0.0187	-0.3155	0.0370	-0.2784
	C3-C2	0.3085	-0.8743	0.2046	-0.4153	0.0984	-0.3169
	C3-C4	0.3121	-0.8753	0.2083	-0.4303	0.1057	-0.3245
I1	C3-C2	0.3127	-0.8849	0.2026	-0.4304	0.1046	-0.3258
	C3-C4	0.3211	-0.9185	0.1964	-0.4679	0.1191	-0.3488
02	O16-O20	0.5614	-0.8980	0.0378	-1.2198	0.4976	-0.7221
12	C3-C2	0.3082	-0.8657	0.2698	-0.4048	0.0941	-0.3106
	C3-C4	0.3179	-0.9097	0.2531	-0.4492	0.1109	-0.3383
	C3-O16	0.2656	-0.3308	0.0474	-0.6541	0.2857	-0.3684
	016-020	0.4045	-0.2978	0.0219	-0.7110	0.3183	-0.3927
HO ₂	022-023	0.4206	-0.3851	0.0198	-0.7505	0.3271	-0.4234
-	H21-O22	0.3618	-2.5691	0.0277	-0.7659	0.0618	-0.7040
TS2	C3-C2	0.3086	-0.8714	0.2688	-0 4045	0.0933	-0 3111
	C3-C4	0.3156	-0.8943	0.2388	-0.4513	0 1138	-0 3374
	C3-O16	0.2613	-0 2331	0.0196	-0.6621	0 3019	-0.3601
	016-020	0 3931	-0 2747	0.0208	-0.6668	0 2991	-0.3677
	H21-O23	0.2504	-1 3749	0.1213	0.0900	-0 5238	-0.4337
	022-023	0.2716	0 2449	0.1182	0.2466	-0.4321	-0 1854
P1	C3-C2	0.3079	-0.8673	0.2621	-0.4039	0.0935	-0 3104
	C3-C4	0.3177	-0.9094	0.2514	-0 4441	0.1084	-0.3357
	C3-016	0.2832	-0.3532	0.0495	-0 7198	0.3157	0.4040
	016-020	0.2032	-0.0187	0.0022	-0.4116	0.2035	-0 2081
NO	N21-022	0.5384	-1 3663	0.0574	-1 2335	0.4459	-0.7875
1002	N21-022	0.5314	-1 3096	0.0581	-1 2018	0.4372	-0.7646
TS3	C3-C2	0.3164	-0.9036	0.2437	-0 4394	0.1067	-0.3326
150	C3-C4	0.3089	-0.8695	0.2786	-0.4060	0.0943	-0.3117
	C3-O16	0.2692	-0 2254	0.0141	-0.6961	0.3199	-0.3762
	016-020	0.2935	0.0260	0.0054	-0 4249	0.2157	-0.2092
	N21-020	0.2931	-0 2292	0.0397	-0 3999	0.1713	-0.2286
	N21-022	0.5434	-1 2831	0.1140	-1 1996	0.4394	-0.7602
	N21-023	0 5499	-1 3262	0.1137	-1 2275	0 4480	-0 7795
Р2	C3-C2	0.3081	-0.8665	0 2743	-0.4035	0.0934	-0.3100
	C3-C4	0.3153	-0.8931	0.2440	-0 4433	0.1100	-0 3333
	C3-016	0.2650	-0 2441	0.0239	-0.6735	0.3062	-0.3673
	016-020	0.3298	-0.0906	0.0230	-0 5034	0.2403	-0.2630
NO	N21-022	0.5220	-1 8902	0.1044	-1 6401	0.5837	-1.0563
TS4	C3-C2	0.3084	-0.8702	0.2623	-0.4030	0.0927	-0.3103
154	C3-C4	0.3099	-0.8766	0.2710	-0 4349	0.1079	-0.3270
	C3-016	0.2694	-0.2016	0.0058	-0.7020	0.3258	-0.3762
	016-020	0.2833	0.0429	0.0977	-0.3964	0.2036	-0 1928
	021-N21	0.3327	-0.3838	0.0933	-0.5704	0.2030	-0.3180
	N21 022	0.5785	-0.3858	0.0933	-0.3417	0.2230	-0.3187
13	$C_{3}C_{2}$	0.3765	-1.0400	0.09/1	-1.419/	0.4/20	-0.3333
15	$C_3 C_4$	0.3123	-0.9250	0.1902	-0.4100	0.0090	-0.3210
	$C_{2} O_{14}$	0.3222	-0.9001	0.1022	-0.4440	0.1015	-0.3433
D2	C_{3}	0.2004	-0.0000	0.0407	-0.033	0.2410	-0.3333
13	$C_{3}-C_{4}$	0.3139	-0.0902	0.2040	-0.+330 -0.4667	0.1050	-0.3282
	03-04	0.3200	-0.7102	0.1740	-0.+00/	0.1100	-0.5470

Reactant

Fig.S1

Fig.S1 contd...

TS2

Fig. S2

Fig.S2 contd...

I2+NO

Fig.S2 contd...

P3

Fig.S2 contd...

Reactant-HOMO

І1-НОМО

Fig.S3 contd...

O₂-HOMO

І2-НОМО

Fig.S3contd...

NO-HOMO

Fig.S3 contd...

ІЗ-НОМО

Reactant-LUMO

TS1-LUMO

I1-LUMO

Fig.S4 contd...

O₂-LUMO

I2-LUMO

NO-LUMO

Fig.S4 contd...

Fig.S4 contd...

I3-LUMO

TABLE CAPTIONS

- Table S1 The selected geometrical parameters (bond length R, in Å, bond angle, θ and dihedral angle, ϕ in degrees) on the potential energy surface of the favourable reaction path calculated at M06-2X/6-311++G(d,p) level of theory.
- Table S2 The global reactivity parameters, hardness (η), softness 1/ η , electrophilicity index (ω), activation hardness (Δn^*) in eV calculated at M06-2X/6-311++G(d,p) level of theory.
- Table S3 The global reactivity parameters, Homo, lumo, energy gap (ΔE) in eV calculated at M06-2X/6-311++G(d,p) level of theory.
- Table S4 NOFFs (unit in electrons) of methyl salicylate with Cl radical of initial reaction and peroxy radical with their reactivities calculated at M06-2X/6-311++G(d,p) level of theory.
- Table S5 NOFFs (unit in electrons) of peroxy radical with HO₂, NO₂, NO radical and their corresponding intermediates, transistion state and products with their reactivities calculated at M06-2X/6-311++G(d,p) level of theory.
- Table S6 Topological analysis of reactants, transition states, intermediates and products of methyl salicylate with Cl radical calculated at M06-2X/6-311++G(d,p) level of theory (values are in atomic units).

FIGURE CAPTIONS

- Fig.S1 The optimized structures of the reactive species corresponding to the formation of peroxy radical I2 from the Cl-initiated reaction of Methyl salicylate at M06-2X/6-311++G(d,p) level of theory.
- Fig.S2 The optimized structures of the reactive species corresponding to the reactions of peroxy radical I2 with HO₂, NO₂ and NO at M06-2X/6-311++G(d,p) level of theory.
- Fig.S3 The density plot of highest occupied molecular orbital (HOMOs) of most favourable reaction pathway calculated at M06-2X/6-311++G(d,p) level of theory. Here red region indicates the positive phase and the blue region indicates the negative phase. The contour shown is 0.05 a.u.
- Fig.S4 The density plot of lowest unoccupied molecular orbital (LUMOs) of most favourable reaction pathway calculated at M06-2X/6-311++G(d,p) level of theory. Here red region indicates the positive phase and the blue region indicates the negative phase. The contour shown is 0.05 a.u.