Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Jitendriya Swain, Santosh R Borkar, Indrapal Singh Aidhen and Ashok Kumar Mishra* Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

Figure SI 1. Molecular Structure of A) Sphingosine (B) FTY720

Figure SI 2. DLS histogram plot for DMPC MLVs in presence of different mol % of FTY720, ([DMPC] =0.4mM)

Figure SI 3. DLS histograms plot for complex smaller aggregates of DMPC MLVs with increase in mol % FTY720. ([DMPC] =0.4mM)

Figure SI 4: Emission spectra of 1-naphthol with increase in mol % of FTY720 at (A) 13 °C (SG) and (B) 35 °C (LC) phase of DMPC MLVs. ([DMPC] =0.4mM, [1-naphthol] = $4\mu M$)

Table SI 1: Variation in fluorescence lifetimes and amplitudes of NpO^{-*} form with increase in mol % FTY720 for SG (13 °C) and LC phase (35 °C) of DMPC MLVs ($\lambda_{ex} = 295$ nm, $\lambda_{em}=460$ nm). [DMPC] = 0.4 mM, [1-naphthol] = 4 μ M. (Error = ± 5 %)

[FTY720] Mol	$\tau_{s}(ns)$	$\tau_1(ns)$	$\tau_{avg}(ns)$	[FTY720] Mol	$\tau_{s}(ns)$	$\tau_1(ns)(\alpha_2)$	$\tau_{avg}(ns)$
(%) Em=460	(α ₁)	(α ₂)		(%) Em=460	(α ₁)		
13°C (SG Phase)				35°C (LC Phase)			
0	7.5 ₂ (0.72)	18.1 ₈ (0.28)	12.6 ₈	0	7.7 ₂ (0.54)	16.8 ₆ (0.46)	13.66
1	7.5 ₀ (0.73)	18.1 ₆ (0.27)	12.5 ₃	1	7.70(0.54)	16.8 ₂ (0.46)	13.63
4	7.4 ₃ (0.73)	17.83(0.27)	12.31	4	7.6, (0.55)	16.7 ₅ (0.45)	13.49
7	7.5 ₂ (0.74)	18.43(0.26)	12.56	7	7.52(0.53)	16.3 ₄ (0.47)	13.22
10	7.4 ₁ (0.74)	17.1(0.26)	11.75	10	7.62(0.55)	15.7 ₅ (0.45)	12.72
30	7.1 ₃ (0.74)	15.46(0.27)	10.83	30	7.2 ₂ (0.59)	13.5 ₅ (0.41)	10.80
50	7.0, (0.72)	14.7, (0.28)	10.53	50	6.1 ₅ (0.52)	11.31(0.48)	9.39

Figure SI 5: Response of the fluorescence intensity of DPH in water with increase in mol % FTY720 ($\lambda_{ex} = 370 \text{ nm}$, [DPH] = 4 μ M).

Figure SI 6: Fluorescence anisotropy plot of DPH in DMPC MLVs and in water with increase in mol % of FTY720 at 13 ° C ($\lambda_{ex} = 370$ nm, [DMPC] =0.4mM [DPH] = 4 μ M).

