Supporting Information

Physicochemical Characterization of Diacyltetrol-Based Lipids consisting of both Diacylglycerol and Phospholipid headgroups

Narsimha Mamidi^{a, \dagger}, Sukhamoy Gorai^{a, \dagger}, Bolledu Ravi^b and Debasis Manna^{a, *}

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Assam 781039,

India

^bDepartment of Chemical Engineering, Indian Institute of Technology Guwahati, Assam

781039, India

Table of Content

Sl. No	Content	Page
(I)	Characteristic Monolayer Forming Properties of the Hybrid Lipids at Air-	S2
	Water Interface.	
(II)	Air-Water Interfacial Behavior of the Lipids.	S2-S3
(III)	Representative TEM images of hybrid lipids in presence of cholesterol	S 3
	(hybrid lipids: Cholesterol (6:4)).	
(IV)	Representative FE-SEM images of hybrid lipids in presence of cholesterol	S4
	(hybrid lipids: Cholesterol (6:4))	
(V)	Differential Scanning Calorimetry Study of Liposomes.	S4
(VI)	Zeta-potential of unsaturated hybrid lipids, DAT-PX ₁₈ as a function of pH	S5
(VII)	Rhodamine 6G (R6G) release profile from pure DAT-PX ₁₆ liposomes.	S6
(VIII)	Carboxyfluorescein (CF) release profile from cholesterol containing DAT-	S6
	PX ₁₆ liposomes and Rhodamine 6G (R6G) release profile from cholesterol	
	containing DAT-PS ₁₆ and DPPC liposomes.	
(IX)	Rhodamine 6G (R6G) release profile from cholesterol containing DAT-	S6
	PA_{16} and DAT-PG ₁₆ liposomes in absence and presence of different Ca ²⁺	
	concentration.	
(X)	Kinetics of Membrane Binding of PKC0-C1b Subdomain	S 7
(XI)	Membrane Binding Parameters of PKC0-C1b Subdomain Determined from	S 7
	Kinetics SPR Analysis	

lipid	Acyl chain length	$A_0(\text{\AA}^2)$	$C_{s}^{-1}_{max}$ (mN/m)	$\pi_{\rm comp} ({\rm mN/m})$
DAT-PA ₁₆	16:16	66.2 ± 2.7	54.8 ± 1.9	25.2 ± 1.5
DAT-PA ₁₈	18:18	86.4 ± 3.3	91.9 ± 4.4	33.1 ± 1.8
DAT-PS ₁₆	16:16	70.1 ± 1.4	60.0 ± 1.7	47.3 ± 2.4
DAT-PS ₁₈	18:18	90.3 ± 3.2	84.6 ± 3.4	35.1 ± 2.5
DAT-PG ₁₆	16:16	88.6 ± 6.1	74.9 ± 3.1	41.5 ± 2.2
DAT-PG ₁₈	18:18	124.8 ± 4.1	66.8 ± 3.5	28.9 ± 2.4

Table S2: Characteristic monolayer forming properties of the hybrid lipids at air-water interface.

Figure S36: Air-water interfacial behavior of the lipids. (A) Surface pressure-molecular area (π -A) isotherm of DPPA (—), DPPS (—), and DPPG (—) lipids. (B) π -A (—) and compressibility moduluous (C_s^{-1})-A (•••) isotherms of DAT-PA₁₆. (C) π -A (—) and C_s^{-1} -A (•••) isotherms of DAT-PS₁₆. (D) π -A (—) and C_s^{-1} -A (•••) isotherms of DAT-PS₁₈. (E) π -A (—) and C_s^{-1} -A (•••) isotherms of DAT-PS₁₈. (E)

Figure S37: Representative TEM images of hybrid lipids in presence of cholesterol (hybrid lipids: Cholesterol (6:4)). TEM samples were prepared by negative staining with 1% uranyl acetate: (A) DAT-PA₁₆/Cholesterol liposomes, (B) DAT-PS₁₆/Cholesterol liposomes, (C) DAT-PG₁₆/Cholesterol liposomes, (D) DAT-PA₁₈/Cholesterol liposomes, (E) DAT-PS₁₈/Cholesterol liposomes, and (F) DAT-PG₁₈/Cholesterol liposomes.

Figure S38: Representative FE-SEM images of hybrid lipids in presence of cholesterol (hybrid lipids: Cholesterol (6:4)): (A) DAT-PA₁₆/Cholesterol liposomes, (B) DAT-PS₁₆/Cholesterol liposomes, (C) DAT-PG₁₆/Cholesterol liposomes, (D) DAT-PA₁₈/Cholesterol liposomes, (E) DAT-PS₁₈/Cholesterol liposomes, and (F) DAT-PG₁₈/Cholesterol liposomes.

Figure S39: Differential scanning calorimetry study of liposomes.

Figure S40: Zeta-potential of unsaturated hybrid lipids, DAT-PX₁₈ as a function of pH.

Figure S41: Rhodamine 6G (R6G) release profile from pure DAT-PX₁₆ liposomes.

Figure S42: Rhodamine 6G (R6G) release profile from cholesterol containing DAT-PA₁₆ and DAT-PG₁₆ liposomes in absence and presence of different Ca^{2+} concentration.

Figure S43: (a) Carboxyfluorescein (CF) release profile from cholesterol containing DAT-PX₁₆ liposomes. (b) Rhodamine 6G (R6G) release profile from cholesterol containing DAT-PS₁₆ and DPPC liposomes.

Figure S44: Kinetics of membrane binding of PKC0-C1b subdomain. Kinetics of binding of PKC0-C1b subdomain to the sensor chip coated with (A) PC/PE/DAT-PA₁₆ (75/20/5), (B) PC/PE/DAT-PS₁₆ (75/20/5) and (C) PC/PE/DAT-PG₁₆ (75/20/5) vesicles. All sensorgrams were taken with the same concentration (100, 200, 500 nM) of PKC0-C1b subdomain. Flow rate was kept at 30 μ L/min. All the measurements were performed in 20 mM Tris, pH 7.4 containing 160 mM NaCl and 50 μ M ZnSO₄.

Table S3. Membrane binding parameters of PKCθ-C1b subdomain determined from kinetics SPR analysis.

Values represent the mean \pm S.D. from triplicate measurements. All the measurements were performed in 20 mM Tris, pH 7.4 containing 160 mM NaCl and 50 μM ZnSO₄.

Protein	PC/PE/DAT-PA ₁₆	PC/PE/DAT-PS ₁₆	PC/PE/DAT-PG ₁₆
	(75:20:5)	(75:20:5)	(75:20:5)
РКСӨ-С1ь	$6.4 \ \pm 1.2 \ nM$	13.6 ± 1.4 nM	$19.1\pm1.1~\text{nM}$