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General Experimental Information

Unless specified, all reagents and starting materials were purchased from commercial
sources and used as received. Solvents were purified following standard literature
procedures. Analytical thin layer chromatography (TLC) was performed using pre-
coated silica gel plates. Visualization was achieved by UV light (254 nm). Flash
chromatography was performed using silica gel and gradient solvent system
(EtOACc:nHexane as eluent). *H and *C NMR spectra were recorded with 400 MHz
spectrometer. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as
the internal reference standard. Multiplicities are given as: s (singlet), br s (broad
singlet), d (doublet), t (triplet), dd (doublet of doublets), q (quartet) or m (multiplet).
The number of protons (n) for a given resonance is indicated by nH and coupling
constants are reported as a J value in Hz. Infrared spectra were recorded on a IR
spectrometer. Solid samples were examined as a thin film between NaCl salt plates.
Low resolution mass spectra were determined on a mass spectrometer and reported in
units of mass to charge (m/z). High-resolution mass spectra (HRMS) were obtained
on a LC/HRMS mass spectrometer.

General Procedure for the Preparation of S,S-diethyl esters
Compounds (1 & 2)

To 15 mmol of the dicarboxylic acid, 10 ml of thionyl chloride was added and reflux
in DMF for 3 hours. Triethylamine and ethanethiol were then added, followed by dry
THF and left to reflux overnight. Upon completion of reaction, solvent was removed
under reduced pressure. Mixture was washed with sodium bicarbonate and extracted
twice with ether. Combined organic layers were dried with sodium sulfate. Organic
layer was then dried under reduced pressure to yield the final product.

Spectroscopic data

\/S
(0]

S,S-diethyl benzene-1,4-bis(carbothioate) (1): White solid; mp: 88-91 °C; IR (Nujol)
1668 (S-C=0) cm™; 'H NMR (CDCI?, 400 MHz) & 8.01 (s, 4H), 3.95 (g, 2H, J = 7.44
Hz), 1.35 (t, 3H, J = 7.44 Hz); *C NMR (CDCF, 400 MHz) & 191.4, 140.6, 127.4,
23.8, 14.6; HRMS ESI (m/z): found, 255.0517, calcd for CioH1504S,: [M+H]+,
255.0513.

S,S-diethyl pyridine-2,5-bis(carbothioate) (2): Pale-yellow solid; mp: 88-90 °C; IR
(Nujol) 1667 (S-C=0) cm™; 1H NMR (CDCI?, 400 MHz) & 9.19 (d, 1H, J = 1.96
Hz), 8.32 (dd, 1H, J =8.12, 2.12 Hz), 8.02 (d, 1H, J =8.04 Hz), 3.11 (q, 2H, J =7.44



Hz), 3.04 (q, 2H, J = 7.44 Hz), 1.34 (q, 6H, J = 7.52 Hz); *C NMR (CDCI?, 400
MHz) & 192.9, 189.9, 154.6, 147.8, 135.9, 135.6, 120.1, 23.9, 23.3, 14.5, 14.3; HRMS
ESI (m/z): found, 256.0471, calcd for C11H14NO,S;: [M+H]+, 256.0466.

General Procedure for the Preparation of O-diesters
Compounds (3 - 11)

To 3 mmol of the dicarboxylic acid, approximately 0.5 ml of concentrated Sulfuric
acid was added and reflux in its respective alcohol overnight. Upon completion of
reaction, solvent was removed under reduced pressure. Cold water was then added,;
extraction was done twice with ethyl acetate. Combined organic layers were dried
with sodium sulfate. Organic layer was then dried under reduced pressure to yield the
final product.

Spectroscopic data

Dimethyl terephthalate (3): White solid; IR (Nujol) 1719 (0-C=0) cm™; *H NMR
(CDCI?, 400 MHz) & 8.10 (s, 4H), 3.95 (s, 6H); **C NMR (CDCI®, 400 MHz) § 166.3,
133.9, 129.6, 52.4; HRMS ESI (m/z): found, 195.0647, calcd for C1oH1104: [M+H]+,
195.0657.

Dimethyl pyridine-2,5-dicarboxylate (4): White solid; IR (Nujol) 1717 (0-C=0) cm™;
'"H NMR (CDCF®, 400 MHz) & 9.30 (dd, 1H, J = 1.98, 0.64 Hz), 8.43 (dd, 1H, J =
8.14, 2.12 Hz), 8.19 (dd, 1H, J = 8.10, 0.68 Hz), 4.03 (s, 3H), 3.98 (s, 3H); *C NMR
(CDCI®, 400 MHz) & 164.9, 164.8, 150.8, 150.7, 138.3, 128.6, 124.7, 53.2, 52.7;
HRMS ESI (m/z): found, 196.0605, calcd for CoH;oNO,4: [M+H]+, 196.0610.

s

Diisopropyl terephthalate (5). White solid: IR (Nujol) 1722 (0-C=0) cm™; *H NMR
(CDCP, 400 MHz) 5 8.08 (s, 4H), 5.29-5.24 (m, 2H), 1.38 (dd, 12H, J = 6.20, 3.04
Hz); *C NMR (CDCI?, 400 MHz) & 165.4, 134.5, 129.4, 68.9, 21.9;: HRMS ESI
(m/z): found, 251.1274, calcd for C14H1904: [M+H]+, 251.1283.

S5



Diisopropyl pyridine-2,5-dicarboxylate (6). Pale-yellow solid; IR (Nujol) 1726 (0—
C=0) cm™; *H NMR (CDCI?, 400 MHz) 9.31 (d, 1H, J = 1.32 Hz), 8.39 (dd, 1H, J =
8.10, 2.04 Hz), 8.15 (d, 1H, J = 8.16 Hz), 5.38-5.28 (m, 2H), 1.39 (dd, 12H, J =
16.02, 6.28 Hz); *C NMR (CDCI?, 400 MHz) § 164.1, 164.0, 151.5, 150.9, 138.0,
129.0, 124.4, 70.1, 69.7, 21.8; HRMS ESI (m/z): found, 252.1229, calcd for
C13H13NO4: [M+H]+, 252.1236.

A0
(0]

Dipropyl terephthalate (7). White solid; IR (Nujol) 1726 (0-C=0) cm™; *H NMR
(CDCF, 400 MHz) 6 8.10 (s, 4H), 4.29 (t, 4H, J = 6.68 Hz), 1.85-1.76 (m, 4H), 1.02
(t, 6H, J = 7.4 Hz); *C NMR (CDCI?, 400 MHz) & 165.9, 134.2, 129.4, 66.9, 22.0,
10.5; HRMS ESI (m/z): found, 251.1275, calcd for C14H1904: [M+H]+, 251.1283.

\

/\/O N

Dipropyl pyridine-2,5-dicarboxylate (8). Yellow oil; IR 1730 (0-C=0) cm™; 'H
NMR (CDCI?, 400 MHz) & 9.28 (s, 1H), 8.38 (dd, 1H, J = 8.10, 2.04 Hz), 8.14 (d, 1H,
J=8.12 Hz), 4.35 (t, 2H, J = 6.84 Hz), 4.29 (t, 2H, J = 6.64 Hz), 1.85-1.76 (m, 4H),
1.02-0.98 (m, 6H); *C NMR (CDCI?, 400 MHz) & 164.5, 164.4, 151.2, 150.8, 138.1,
128.7, 124.5, 67.8, 67.4, 22.0, 10.4, 10.3; HRMS ESI (m/z): found, 252.1244, calcd
for C13H1sNO,: [M+H]+, 252.1236.

@)

o
_0O

0]

Dimethyl naphthalene-2,6-dicarboxylate (9). Pale-yellow solid; mp: 190-192 °C; IR
(Nujol) 1713 (O-C=0) cm™; *H NMR (CDCF®, 400 MHz) & 8.63 (s, 2H), 8.11 (dd,
2H, J = 8.58, 1.16 Hz), 7.99 (d, 2H, J = 8.56 Hz), 4.00 (s, 3H); *C NMR (CDCI?, 400
MHz) 6 166.8, 134.6, 130.6, 129.6, 126.0, 52.4; HRMS ESI (m/z): found, 245.0821,
calcd for C14H120,4: [M+H]+, 245.0814.
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Dimethyl biphenyl-4,4’-dicarboxylate (10): White solid; IR (Nujol) 1719 (O-C=0)
cm™; *H NMR (CDCI?, 400 MHz) & 8.13 (d, J = 8.12 Hz, 4H), 7.79 (d, J = 8.12 Hz,
4H), 3.95 (s, 6H); °C NMR (CDCI®, 400 MHz) & 166.8, 144.4, 130.2, 129.7, 127.2,
52.2; HRMS ESI (m/z): found, 271.0974, calcd for CisH1504: [M+H]+, 271.0970.

Dimethyl [2,2'-bipyridine]-5,5'-dicarboxylate (11): White solid; mp: 266-270 °C; IR
(Nujol) 1728 (0-C=0) cm™; *H NMR (CDCF®, 400 MHz) 6 9.32 (s, 2H), 8.61 (d, J =
8.28 Hz, 2H), 8.45 (dd, 2H, J = 8.26, 2.04 Hz), 4.02 (s, 6H); **C NMR (CDCI®, 400
MHz) § 165.6, 158.4, 150.6, 138.1, 126.3, 121.3, 52.5; HRMS ESI (m/z): found,
273.0866, calcd for C14H13N,04: [M+H]+, 273.0875.
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Figure S1. *H and **C NMR spectra of S,S-diethyl benzene-1,4-bis(carbothioate)

(compound 1).
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Figure S2. *H and **C NMR spectra of S,S-diethyl pyridine-2,5-bis(carbothioate)

(compound 2).
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Figure S3. *H and **C NMR spectra of dimethyl terephthalate (compound 3).
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Figure S4. *H and **C NMR spectra of dimethyl pyridine-2,5-dicarboxylate
(compound 4).
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Figure S5. *H and **C NMR spectra of diisopropyl terephthalate (compound 5).
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Figure S7. 'H and **C NMR spectra of dipropy! terephthalate (compound 7).
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Figure S9. *H and **C NMR spectra of dimethyl naphthalene-2,6-dicarboxylate
(compound 9).
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Figure S10. *H and *C NMR spectra of dimethyl biphenyl-4,4’-dicarboxylate
(compound 10).
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Figure S11. *H and *C NMR spectra of dimethyl [2,2"-bipyridine]-5,5'-dicarboxylate
(compound 11).
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Figure S12. Cyclic voltammograms of compound 1 at 20 °C and -30 °C.
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Figure S12a: Cyclic voltammograms of 1 at 20 °C.
Scan rates (v) from0.1Vs* 02Vs' 05Vs?t 1.0V
st,20Vst5Vsh10Vst 12Vs? 15V stand 20
V s (top to bottom) obtained at a glassy carbon
electrode in CH;CN (0.2 M BusNPFg) for the 1-
electron reduction (left) and 2-electron reduction
(right) of ca. 2 mM analyte. Current data were scaled
by multiplying by v°°.
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Figure S12b: Cyclic voltammograms of 1 at -30 °C.
Scan rates (v) from0.1Vs* 02Vst 05Vvs? 1.0V
sH,20Vst5Vsh10Vst 12Vs®t 15V st and 20
V s (top to bottom) obtained at a glassy carbon
electrode in CH3;CN (0.2 M BusNPFg) for the 1-
electron reduction (left) and 2-electron reduction
(right) of ca. 2 mM analyte. Current data were scaled
by multiplying by v°°.
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Figure S13. Cyclic voltammograms of compound 2 at 20 °C and -30 °C.
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Figure S13a: Cyclic voltammograms of 2 at 20 °C.
Scan rates (v) from 0.1 V s, 02V s' 05V s?,
10Vsh20vshs5vsh10vst12vst 15V
s and 20 V s (top to bottom) obtained at a glassy
carbon electrode in CH;CN (0.2 M BuyNPFg) for
the 1-electron reduction (left) and 2-electron
reduction (right) of ca. 2 mM analyte. Current data

were scaled by multiplying by v%°.
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Figure S13b: Cyclic voltammograms of 2 at -30
°C. Scan rates (v) from 0.1V s, 0.2V s 05V
st 1.0Vsh20Vsh5Vsh10Vst 12Vs?h
15V st and 20 V s (top to bottom) obtained at a
glassy carbon electrode in CH;CN (0.2 M
BusNPFg) for the 1-electron reduction (left) and
2-electron reduction (right) of ca. 2 mM analyte.

Current data were scaled by multiplying by %%,
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Figure S14. Cyclic voltammograms of compound 3 at 20 °C and -30 °C.
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Figure Sl4a: Cyclic voltammograms of 3 at 20 °C.
Scan rates (v) from 0.1V s*, 02Vs* 05Vs? 1.0
Vsh20Vvstsvsh10vsh12vVst 15Vs?
and 20 V s™ (top to bottom) obtained at a glassy
carbon electrode in CH3CN (0.2 M BusNPFg) for the
1-electron reduction (left) and 2-electron reduction
(right) of ca. 2 mM analyte. Current data were
scaled by multiplying by %%,
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Figure S14b: Cyclic voltammograms of 3 at -30 °C.
Scan rates (v) from0.1Vs? 02Vs* 05Vs' 1.0V
st 20Vst 5Vst10Vst 12Vs?t 15V stand 20
V s (top to bottom) obtained at a glassy carbon
electrode in CH3;CN (0.2 M BusNPFg) for the 1-
electron reduction (left) and 2-electron reduction
(right) of ca. 2 mM analyte. Current data were scaled
by multiplying by v°°.
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Figure S15. Cyclic voltammograms of compound 4 at 20 °C and -30 °C.
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Figure S15a: Cyclic voltammograms of 4 at 20 °C.
Scan rates (v) from 0.1V s* 02Vst 05Vst 1.0V
sth20Vsh5vsh10Vst12Vst 15V stand 20
V st (top to bottom) obtained at a glassy carbon
electrode in CH;CN (0.2 M BuyNPFg) for the 1-
electron reduction (left) and 2-electron reduction (right)
of ca. 2 mM analyte. Current data were scaled by
multiplying by %%,

LTI
T

[N
=3
1
=}
o
«n
~
o
P
o
o
«n

E/Vvs. Fe/Fc" E/Vvs. Fe/Fc'

Figure S15b: Cyclic voltammograms of 4 at -30 °C.
Scan rates (v) from 0.1V st 02V s® 05Vs? 1.0
Vs 20Vsh5Vvsh10Vst12vst 15Vstand
20 V s (top to bottom) obtained at a glassy carbon
electrode in CH3;CN (0.2 M BuyNPFg) for the 1-
electron reduction (left) and 2-electron reduction
(right) of ca. 2 mM analyte. Current data were scaled
by multiplying by v°°.
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Figure S16. Cyclic voltammograms of compound 5 at 20 °C and -30 °C.
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Figure Sl6a: Cyclic voltammograms of 5 at 20 °C.
Scan rates (v) from 0.1V s 02Vs' 05Vst 1.0V
st 20Vst5Vst10Vst 12Vst 15V stand 20
V s (top to bottom) obtained at a glassy carbon
electrode in CH3;CN (0.2 M Bu,;NPFg) for the 1-
electron reduction (left) and 2-electron reduction
(right) of ca. 2 mM analyte. Current data were scaled
by multiplying by v%°.
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Figure S16b: Cyclic voltammograms of 5 at -30 °C.
Scan rates (v) from 0.1V s*, 02V s* 05Vs? 1.0
vsh2ovshsvsh1ovsh12vst 15Vt
and 20 V s* (top to bottom) obtained at a glassy
carbon electrode in CH3CN (0.2 M BuyNPFg) for the
1-electron reduction (left) and 2-electron reduction
(right) of ca. 2 mM analyte. Current data were
scaled by multiplying by v%°.
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Figure S17. Cyclic voltammograms of compound 6 at 20 °C and -30 °C.
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Figure S17a: Cyclic voltammograms of 6 at 20 °C. Figure S17b: Cyclic voltammograms of 6 at -30 °C.
Scan rates (v) from 0.1V s* 02Vs* 05Vs? 1.0 Scan rates (v) from 0.1V s*, 02Vs' 05Vs' 1.0V
Vsh20Vvstsvsh10vsh12vVst 15Vs? st 20Vsh5vsh10Vst12Vst 15V stand 20
and 20 V s™ (top to bottom) obtained at a glassy V s? (top to bottom) obtained at a glassy carbon
carbon electrode in CHsCN (0.2 M BuyNPFg) for the electrode in CH;CN (0.2 M BuyNPFg) for the 1-
1-electron reduction (left) and 2-electron reduction electron reduction (left) and 2-electron reduction (right)
(right) of ca. 2 mM analyte. Current data were of ca. 2 mM analyte. Current data were scaled by
scaled by multiplying by %%, multiplying by v°°.
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Figure S18. Cyclic voltammograms of compound 7 at 20 °C and -30 °C.
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Figure S18a: Cyclic voltammograms of 7 at 20 °C.
Scan rates () from 0.1V s?, 0.2V s* 05V st 1.0
Vs'20Vst5Vst10Vs'12Vst 15Vstand
20 V s (top to bottom) obtained at a glassy carbon
electrode in CH3;CN (0.2 M BusNPFg) for the 1-
electron reduction (left) and 2-electron reduction
(right) of ca. 2 mM analyte. Current data were scaled
by multiplying by v%°.
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Figure S18b: Cyclic voltammograms of 7 at -30
°C. Scan rates (v) from 0.1V s? 0.2Vs? 05Vs?,
10Vsh20vsh5Vsh10Vsh12Vst 15V
st and 20 V s (top to bottom) obtained at a glassy
carbon electrode in CH3;CN (0.2 M BuyNPFg) for
the 1-electron reduction (left) and 2-electron
reduction (right) of ca. 2 mM analyte. Current data
were scaled by multiplying by %%,
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Figure S19. Cyclic voltammograms of compound 8 at 20 °C and -30 °C.
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Figure S19a: Cyclic voltammograms of 8 at 20 °C.
Scan rates () from 0.1V s?, 0.2V s* 05V st 1.0
Vst 20Vst5Vst10vst 12Vvst 15V stand
20 V s (top to bottom) obtained at a glassy carbon
electrode in CH3;CN (0.2 M BusNPFg) for the 1-
electron reduction (left) and 2-electron reduction
(right) of ca. 2 mM analyte. Current data were scaled
by multiplying by v%°.
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Figure S19b: Cyclic voltammograms of 8 at -30 °C.
Scan rates (v) from 0.1V s, 0.2V s* 05Vs? 1.0
Vs 20Vsh5Vvsh10Vst 12vst 15Vstand
20 V s (top to bottom) obtained at a glassy carbon
electrode in CH;CN (0.2 M Buy4NPFg) for the 1-
electron reduction (left) and 2-electron reduction
(right) of ca. 2 mM analyte. Current data were scaled
by multiplying by %%,
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Figure S20. Cyclic voltammograms of compound 9 at 20 °C and -30 °C.
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Figure S20a: Cyclic voltammograms of 9 at 20 °C.
Scan rates (v) from0.1Vs? 02Vs? 05Vst 1.0V
st 20Vs!t5Vst10Vst 12Vst 15V stand 20
V s* (top to bottom) obtained at a glassy carbon
electrode in CH3;CN (0.2 M Bu,;NPFg) for the 1-
electron reduction (left) and 2-electron reduction
(right) of ca. 2 mM analyte. Current data were scaled
by multiplying by v%°.
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Figure S20b: Cyclic voltammograms of 9 at -30 °C.
Scan rates (v) from 0.1V s™*, 0.2V s 05Vs? 1.0
vsh2ovshsvsh1ovsh12vst 15Vt
and 20 V s* (top to bottom) obtained at a glassy
carbon electrode in CH3CN (0.2 M BuyNPFg) for the
1-electron reduction (left) and 2-electron reduction
(right) of ca. 2 mM analyte. Current data were
scaled by multiplying by v%°.
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Figure S21. Cyclic voltammograms of compound 10 at 20 °C.
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Figure S21: Cyclic voltammograms of 10 at 20 °C. Scan rates (v) from 0.1V s, 0.2V s, 0.5V s?,
1.0vsh20vsts5vst 10Vs?t 12V st 15V st and 20 V s? (top to bottom) obtained at a
glassy carbon electrode in DMF (0.2 M BuyNPFg) for the 1-electron reduction (left) and 2-electron
reduction (right) of ca. 2 mM analyte. Current data were scaled by multiplying by 1%°.
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Figure S22. Cyclic voltammograms of compound 11 at 20 °C.
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Figure S22: Cyclic voltammograms of 11 at 20 °C. Scan rates (v) from 0.1 Vs, 0.2V s 05V s,
1.0Vst20Vst5Vst10Vs?t 12V st 15V stand 20 V s (top to bottom) obtained at a glassy
carbon electrode in DCM (0.2 M BuyNPFg) for the 1-electron reduction (left) and 2-electron reduction
(right) of ca. 2 mM analyte. Current data were scaled by multiplying by 1v%°.
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Figure S23. Voltammetric and coulometric data of S,S-diethyl benzene-1,4-
bis(carbothioate) (compound 1). () Before electrolysis. (---) After one-electron

reduction.
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Figure S24. Voltammetric and coulometric data of S,S-diethyl pyridine-2,5-
bis(carbothioate) (compound 2). () Before electrolysis. (---) After one-electron
reduction.
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Figure S25. Voltammetric and coulometric data of dimethyl terephthalate (compound
3). (-) Before electrolysis. (---) After one-electron reduction.
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Figure S26. Voltammetric and coulometric data of dimethyl pyridine-2,5-
dicarboxylate (compound 4). (-) Before electrolysis. (---) After one-electron

reduction.
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Figure S27. Voltammetric and coulometric data of diisopropyl terephthalate
(compound 5). () Before electrolysis. (---) After one-electron reduction.
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Figure S28. Voltammetric and coulometric data of diisopropyl pyridine-2,5-
dicarboxylate (compound 6). () Before electrolysis. (---) After one-electron
reduction.
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Figure S29. Voltammetric and coulometric data of dipropyl terephthalate (compound
7). (-) Before electrolysis. (---) After one-electron reduction.
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Figure S30. Voltammetric and coulometric data of dipropyl pyridine-2,5-
digarbpxylate (compound 8). (-) Before electrolysis. (---) After one-electron
reduction.
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Figure S31. Voltammetric and coulometric data of dimethyl naphthalene-2,6-
dicarboxylate (compound 9). (-) Before electrolysis. (---) After one-electron

reduction.
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Figure S32. In situ electrochemical UV-vis spectra obtained at a Pt mesh electrode of
S,S-diethyl benzene-1,4-bis(carbothioate) (compound 1). (—) Before electrolysis.
(—) After one-electron reduction. (---) After re-oxidation back to starting material.
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Figure S33. In situ electrochemical UV-vis spectra obtained at a Pt mesh electrode of
S,S-diethyl pyridine-2,5-bis(carbothioate) (compound 2). (—) Before electrolysis.
(—) After one-electron reduction. (---) After re-oxidation back to starting material.
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Figure S34. In situ electrochemical UV-vis spectra obtained at a Pt mesh electrode of
dimethyl terephthalate (compound 3). (—) Before electrolysis. (—) After one-electron
reduction. (---) After re-oxidation back to starting material.
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Figure S35. In situ electrochemical UV-vis spectra obtained at a Pt mesh electrode of
dimethyl pyridine-2,5-dicarboxylate (compound 4). (—) Before electrolysis. (—)
After one-electron reduction. (---) After re-oxidation back to starting material.
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Figure S36. In situ electrochemical UV-vis spectra obtained at a Pt mesh electrode of
diisopropyl terephthalate (compound 5). (—) Before electrolysis. (—) After one-
electron reduction. (---) After re-oxidation back to starting material.
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Figure S37. In situ electrochemical UV-vis spectra obtained at a Pt mesh electrode of
diisopropyl pyridine-2,5-dicarboxylate (compound 6). (—) Before electrolysis. (—)
After one-electron reduction. (---) After re-oxidation back to starting material.
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Figure S38. In situ electrochemical UV-vis spectra obtained at a Pt mesh electrode of
dipropyl terephthalate (compound 7). (—) Before electrolysis. (—) After one-electron
reduction. (---) After re-oxidation back to starting material.
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Figure S39. In situ electrochemical UV-vis spectra obtained at a Pt mesh electrode of
dipropyl pyridine-2,5-dicarboxylate (compound 8). (—) Before electrolysis. (—)
After one-electron reduction. (---) After re-oxidation back to starting material.
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Figure S40. In situ electrochemical UV-vis spectra obtained at a Pt mesh electrode of
dimethyl naphthalene-2,6-dicarboxylate (compound 9). (—) Before electrolysis. (—)
After one-electron reduction. (---) After re-oxidation back to starting material.
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Figure S41a. Background subtracted in situ electrochemical UV-vis spectra obtained
at a gold micro-mesh electrode of 1 mM S,S-diethyl pyridine-2,5-bis(carbothioate)
(compound 2). (—) Before electrolysis. (—) After one-electron reduction.
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Figure S41b. Background subtracted in situ electrochemical UV-vis spectra obtained
at a gold micro-mesh electrode of 1 mM diisopropyl terephthalate (compound 5). (—)
Before electrolysis. (—) After one-electron reduction.
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Figure S41c. Background subtracted in situ electrochemical UV-vis spectra obtained
at a gold micro-mesh electrode of 1 mM dimethyl naphthalene-2,6-dicarboxylate
(compound 9). (—) Before electrolysis. (—) After one-electron reduction.
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Figure S41d. Absorbance spectrum of gold micro-mesh electrode.
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Compound Colour Absorbance | Transmittance | Absorbance | Transmission Chromatic
(Wavelength | of Au micro- through Au of compound through contrast
/ nm)? mesh® micro-mesh + Au micro- | compound + ratio:
(Ro)° mesh? Au micro- Ro/Ry
mesh (c=1mm)
(R’
2 Blue (612) 0.450 0.355 0.777 + 0.059 6.0
0.450)
=1.227
5 Red (533) 0.439 0.364 (0.572 + 0.097 3.8
0.439)
=1.011
9 Green (732) 0.460 0.347 (0.541 + 0.100 3.5
0.460)
=1.001

Table S1. Table of chromatic contrast ratios measured at the gold micro-mesh
electrode for 1 mM solutions of the analytes in CH3CN containing 0.2 M BusNPFe.
*Wavelength used for measurement. "Absorbance of the gold micromesh electrode at
specified wavelengths (from data in Figure S41d). ‘Equivalent transmission value
from absorbance reading (T = 10™). “Absorbance of compound plus absorbance of
mesh (from data in Figures S4la-d) at specified wavelengths. °Equivalent

transmission value from absorbance reading (T = 10™).
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Figure S42. (Left hand side). Linear sweep voltammograms of compounds 2, 5 and 9
in CH3CN containing 0.2 M BusNPFg at the gold micro-mesh electrode. The x-axis
has been converted from potential to time. (Right hand side) Integration of the
current-time data in the left hand column to give the charge (Q).
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Compound Colour Absorbance” Q/ct Charge per unit | Chromatic

(Wavelength area efficiencies:

/ nm)? Qq/Ccm2¢ nlcm? Ct

(c=1mM)
2 Blue (612) 0.777 58 x 107" 9.63 x 107 800
5 Red (533) 0.572 5.0x 107 8.30 x 107* 690
9 Green (732) 0.541 46x 107" 7.64 x 107 430

Table S2. Table of chromatic efficiencies at the gold micro-mesh electrode for 1 mM
solutions of the analytes in CH3CN containing 0.2 M BusNPFs. *Wavelength used for
measurement. "Absorbance of the analyte at the specified wavelength (from data in
Figures S41a-c). “Charge measured by integration of the current from linear sweep
voltammetric measurements (from data in Figure S42). “Charge per unit area of
electrode. The area of the electrode (0.6024 cm?) was estimated by the Randles-
Sevcik equation (i, = 2.686 x 10°n*?AcD"**?) using 1 mM ferrocene in acetonitrile
solution as the standard and with a diffusion coefficient value of 2.2 x 10° cm?s ™.
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Figure S43a: Cyclic voltammograms (1%, 10", 20", 30", 40™, 50" 60™, 70", 80™,
90™, 100™) of 2 at 20 °C. Scan rate (V) at 0.9 V s™obtained at a gold mesh electrode in
CH3CN (0.2 M BuyNPFg) for the 1-electron process over 100 cycles of ca. 10 mM
analyte. Current data were scaled by multiplying by v°°.
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Figure S43b: Cyclic voltammograms (1%, 10", 20" 30", 40™ 50" 60™, 70", 80™,
90™ 100™) of 5 at 20 °C. Scan rate (1) at 0.5 V s obtained at a gold mesh electrode in
CH3CN (0.2 M BuyNPFg) for the 1-electron process over 100 cycles of ca. 10 mM
analyte. Current data were scaled by multiplying by v°°.
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Figure S43c: Cyclic voltammograms (1%, 10", 20", 30™, 40™, 50™, 60™, 70™, 80™,
90™, 100™) of 9 at 20 °C. Scan rate (V) at 0.5 V s™obtained at a gold mesh electrode in
CH3CN (0.2 M Bu4NPFg) for the 1-electron process over 100 cycles of ca. 10 mM

analyte. Current data were scaled by multiplying by v°~.
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