Revised Version

Quantitative investigations of thermal and photoinduced J- and H-aggregation of hydrophobic spirooxazines in binary solvent through UV/VIS spectroscopy

A.V. Metelitsa^{a,b}, C. Coudret^a, J.C. Micheau^{a*}, N.A. Voloshin^c

a: IMRCP, UMR 5623, Université P. Sabatier, Toulouse 3; F-31062 Toulouse Cedex, France. b: Institute of Physical Organic Chemistry, Stachki Av.194/2, 344090 Rostov on Don, Russia. c: Southern Scientific Centre of Russian Academy of Science, Chekhova Str., 41, 344006, Rostov on Don, Russia

*: corresponding author

Supplementary Information Part

1)- Absorbance(λ_1) vs Absorbance(λ_2) diagrams

a)- Analysis of the H-aggregates of 1 vs concentration

They have been used to demonstrate the invariance of the H-aggregates spectra at various concentrations (from figure 2a of the main text):

Figure 1S: Selection of the various wavelengths for the invariance check. For the sake of clarity only two wavelength (460and 520nm) are fully displayed. The circles illustrate the pick-up of the 7 absorbances values at 460 and 520nm.

Figure 2S: Example of Abs vs Abs diagrams from figure 1S (only two line have been plotted).

For the linear analysis of the figure 1S Abs *vs* Abs diagrams, the selected 5 wavelengths have been plotted together (10 pairs). The linearity of the plots has been checked from the values linear regression coefficients.

Wavelengths (nm)	460	480	500	520	540
460	X	.99833	.99835	.99696	.99644
480		X	.99993	.99865	.99644
500			X	.99895	.99690
520				X	.99842
540					Х

Table IS: Values of the linear regression coefficients of the various Abs vs Abs diagrams extracted from figure 1S. All the values are > 0.996 confirming the invariance of the shape of the 510nm band.

b)- Analysis of the H-aggregation spectral evolution of $\underline{1}$

7 wavelengths have been selected on the figure 3 (main text) and 21 pairs have been checked for linearity.

wavelengths (nm)	476	511	536	581	591	626	661
476	X	.99637	.99570	.98877	.99245	.99298	.99765
511		X	.98637	.99731	.99869	.99926	.99846
536			X	.97542	.98080	.98003	.99109
581				X	.99946	.99876	.99434
591					X	.99914	.99598
626						X	.99639
661							Х

Table IIS: Values of the linear regression coefficients of the various Abs vs Abs diagrams extracted from figure 3 (main text). All are higher than 0.980 confirming the linearity of all the diagrams, the presence of only two spectra and therefore the absence of any intermediate.

c)- Analysis of the H- and J-aggregation spectral evolution of $\underline{1}$ in presence of SDS

6 wavelengths have been selected on the figure 5 (main text) and 15 pairs have been checked for linearity.

	362	443	512	582	617	668
362	Х	.99703	.98472	.42372	.15559	.98070
443		Х	.99039	.43090	.12835	.98647
512			X	.51285	.00702	.99941
582				Х	.75155	.53979
617					Х	.02242
668						Х

Table IIIS: Values of the linear regression coefficients of the various Abs *vs* Abs diagrams extracted from figure 6 (main text). Those higher than 0.980 are displayed in bold. For these wavelengths, linearity is insured. Note however the lack of correlation for 582 and 617nm.

	376	480	519	609	668	675
376	Х	.97994	.97337	.61729	.82557	.87184
480		X	.99740	.69969	.88417	.92361
519			Х	.74489	.91143	.94513
609				Х	.94730	.91531
668					Х	.99553
675						Х

d)- Abs vs Abs diagram analysis of the photo-induced aggregation of $\underline{2}$

Table IVS: Values of the linear regression coefficients of the various Abs *vs* Abs diagrams extracted from figure 8 (main text). Those higher than 0.825 are displayed in bold showing the linearity. Note the lack of correlation for 609nm with 376, 480 and 519nm.

2)-Kinetic analysis of the H-aggregation of $\underline{1}$

Because the kinetic of the aggregation is monitored by an UV/visible spectrophotometer, the absorbance is a linear function of the concentration of the aggregates. The normalized evolution is given by: $Y = (Abs(t) - Abs_{\infty}) / (Abs_0 - Abs_{\infty})$. This is a decreasing function going from Y = 1 at t = 0 to Y = 0 at $t \rightarrow \infty$.

Table VS provides a brief summary of some of the most common expressions used in the literature for fitting aggregation kinetic data displayed on figure 4A (main text).

entry	integrated equation	parameters	F (10 ⁻⁵)	figure
1 A-E	$Y = \exp[-(kt)^n]$	k; n	27.9	3S
2 F-W	$Y = ((k_1/k_2) + A_0)/(1 + (k_1/k_2A_0)exp(k_1 + k_2A_0)t)$	$k_1; k_2A_0$	9.35	4S
3 SKa	$Y = \exp\{-[\alpha/t][\exp(\beta t^2) - 1]\}$	α; β	24.4	5S
4 SKd	$Y = \exp\{[\alpha t][\exp(-\beta t^2) - 1]\}$	α; β	1.82	4A

Table VS : List of integrated 2-parameters equations used to check the figure 4a kinetic record. A-E: Avrami-Erofe'ev; F-W: Finke-Watzky; SKa: Skrdla "acceleratory"; SKd: Skrdla "deceleratory". The normalized evolution is given by: $Y = (Abs(t) - Abs_{\infty}) / (Abs_0 - Abs_{\infty})$. F: residual least squares.

Figure 3S: Attempt to fit the aggregation kinetics with the Avrami-Erofe'ev equation using $A_0 = 2.72e-2$; $A_{inf} = 4.49e-1$; k = 1.67e-02; n = 1.57. Note in "M" the misfit zones.

Figure 4S: Attempt to fit the aggregation kinetics with the Finke-Watzky equation using $Abs_0 = 1.94e-02$; $Abs_{inf} = 4.49e-01$; $k_2[A_0] = 3.08e-2$; $k_1 = 7.56e-3$. Note in "M" the misfit zones.

Figure 5S: Attempt to fit the aggregation kinetics with the Skrdla "acceleratory" equation using $Abs_0 = 1.38e-03$; $Abs_{inf} = 4.45e-01$; alpha = 1.30e+02; beta = 1.05e-04. Note in "M" the misfit zones.

3)-Kinetic analysis of the aggregation of $\underline{1}$ in presence of SDS (from figure 9A).

The Skrdla "decelerative" equation has been used to fit the kinetic record.

Figure 6S: Fit of the aggregation kinetics of <u>1</u> in presence of SDS with the Skrdla "decelerative" equation using Abs₀ = 9.83e-02; Abs_{inf} = 1.34; α = 1.36e-2; β = 0.2.

4)-Kinetic analysis of the photo-induced aggregation of $\underline{2}$ in presence of SDS (from figure 9B).

Figure 7S: Fit of the photo-induced aggregation kinetics of <u>2</u> in presence of SDS with the Skrdla "decelerative" equation using $Abs_0 = 6.64e-2$; $Abs_{inf} = 0.93$; $\alpha = 0.007$; $\beta = 0.2$.