Electronic Supplementary Information

Enhanced thermoelectric behavior and visible light activity of Ag@TiO₂/Polyaniline nanocomposite synthesized by biogenic-chemical route

Mohd Omaish Ansari, Mohammad Mansoob Khan, Sajid Ali Ansari, Jintae Lee and Moo Hwan Cho*

School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 712-749, South Korea. Phone: +82-53-810-2517; Fax: +82-53- 810-4631,*Email: mhcho@ynu.ac.kr

UV-vis diffuse absorbance spectra of pure TiO₂ and Ag@TiO₂/Pani nanocomposite

Fig. S1. UV-vis diffuse absorbance spectra of pure TiO₂ and Ag@TiO₂/Pani nanocomposite.

XPS survey spectra of Ag@TiO2 and Ag@TiO2/Pani nanocomposite

Fig. S2. XPS survey spectra of Ag@TiO₂ and Ag@TiO₂/Pani nanocomposite.

XPS C 1s spectra of Ag@TiO2 and Ag@TiO2/Pani nanocomposite

Fig. S3. XPS C 1s spectra of Ag@TiO₂ and Ag@TiO₂/Pani nanocomposite.

TEM and HRTEM images of Ag@TiO2/Pani nanocomposite

Fig. S4. (a) TEM, and (b) HRTEM image of Ag@TiO₂/Pani nanocomposite.

SAED pattern of the Ag@TiO2/Pani nanocomposite

Fig. S5. SAED pattern of Ag@TiO₂/Pani nanocomposite.

Temperature	San	nple	DC Electrical Conductivity-σ (S/cm)				
(°C)			Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5
40	Ag@TiO ₂ /Pani	(HCl doped)	6.14	5.15	4.02	3.51	3.16
50			6.46	5.52	4.23	3.70	3.28
60			6.86	5.81	4.40	3.86	3.45
70			7.16	6.01	4.54	4.08	3.59
80			7.40	6.32	4.73	4.28	3.75
90			7.62	6.51	4.92	4.52	3.96
100			7.85	6.64	5.15	4.73	4.10
110			8.32	6.90	5.47	4.91	4.33
120			8.60	7.04	5.62	5.21	4.52
130			8.79	7.20	5.79	5.44	4.74
140			8.90	7.34	5.98	5.55	4.98
150			8.97	7.42	5.90	5.62	5.31
40	Ag@TiO ₂ /Pani	(pTSA doped)	14.80	12.17	9.98	9.04	8.20
50			15.70	12.86	10.61	9.62	8.73
60			16.46	13.60	11.21	10.29	9.30
70			17.38	14.34	11.89	10.85	9.86
80			18.12	14.92	12.56	11.44	10.40
90			19.05	15.60	13.20	12.09	10.99
100			20.00	16.32	13.83	12.66	11.57
110			21.12	17.07	14.54	13.23	12.15
120			22.12	17.50	15.06	13.68	12.69
130			22.45	18.02	15.56	14.24	13.21
140			21.49	18.16	16.00	14.73	13.81
150			18.54	17.57	16.11	15.10	14.16

Table S1: DC Electrical Conductivity of HCl and pTSA doped Ag@TiO₂/Pani nanocomposite under cyclic aging conditions.

Photodegradation of (a) MB, and (b) BB by Pani and Ag@TiO₂/Pani nanocomposite under UV light irradiation

The Ag@TiO₂/Pani nanocomposite was also tested for the photocatalytic degradation of MB and BB under UV light irradiation (specification: Philips lamp, 16 W).

Fig. S6. Plot of C/C₀ *vs* the irradiation time (h) for the photodegradation of (**a**) MB, and (**b**) BB by Pani and Ag@TiO₂/Pani nanocomposite under UV light irradiation.