Selective naked-eye cyanide detection in aqueous media using a carbazole-

derived fluorescent dye

Rajendra Kumar Konidena and K. R. Justin Thomas*

Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee,

Roorkee – 247 667, India.

*Corresponding author. E-mail: krjt8fcy@iitr.ac.in; Phone: +91-1332-285376.

Electronic Supplementary Information

Fig. S1 Absorption spectra of 3b in the presence of differe	t anions S2		
Fig. S2 Absorption changes for 3b on addition of cyanide	aqueous acetonitrile S2		
Fig. S3 Time dependent absorption changes of 3a (left) an	Time dependent absorption changes of 3a (left) and 3b (right) upon addition		
of cyanide anion	S3		
Fig. S4Kinetics of sensor 3b action	S3		
Fig. S5Jobs plot for 3b	S4		
Detection limit determination	S5		
Fig. S6 ¹ H NMR spectral changes observed for the dye 3b	n addition of various		
amounts of cyanide in DMSO-d ₆	S6		
Fig. S7 Optimized geometries for 3a, 3b, 3a-CN, and 3b-C	N S7		
Fig. S8 Absorbance response of 3b in the presence of 30 e	other anions and		
2 equiv of CN ⁻	S5		
Detection limit determination	S7		
Fig. S9Ratiometric absorbance changes (A_{330}/A_{405}) of 3b	n addition of 2 equiv of		
CN ⁻ and 10 equiv of other anions. Black bars indic	te the blank and various		
anions, and red bars indicate the addition of CN- to	he interfering anions S8		
Table S1 Computed vertical transition energies and their osc	lator strengths and		
configurations for the dyes	S9		
Fig. S10 ¹ H NMR spectra for $2a$ in CDCl ₃	S10		
Fig. S11 13 C NMR spectra for 2a in CDCl ₃	S10		
Fig. S12 ¹ H NMR spectra for 2b in CDCl ₃	S11		
Fig. S13 13 C NMR spectra for 2b in CDCl ₃	S11		
Fig. S14 ¹ H NMR spectra for 3a in CDCl ₃	S12		
Fig. S15 13 C NMR spectra for 3a in CDCl ₃	S12		
Fig. S15 ¹³ C NMR spectra for 3a in CDCl3Fig. S16 ¹ H NMR spectra for 3b in CDCl3	S12 S13		

Fig. S1 Absorption spectra of 3b in the presence of different anions.

Fig. S2 Absorption changes for 3b on addition of cyanide in aqueous acetonitrile.

Fig. S3 Time dependent absorption changes of **3a** (left) and **3b** (right) upon addition of 2 equiv. and 10 equiv. of .CN⁻ respectively.

Fig. S4 Kinetics of sensor 3b action.

Fig. S5 Jobs plot for 3b.

Detection limit determination

The detection limit of the probes 3a and 3b for cyanide was estimated by using the formula,

 $Detection \ limit = \frac{k \times \sigma}{S}$

Where k = 3, σ is the standard deviation of the blank solution and *S* is the slope of the calibration curve.

The calibration graphs observed for the dyes **3a** and **3b** are shown below:

Dye	σ	<i>S</i> , μM ⁻¹	Detection limit, µM
3 a	0.0054	0.128	0.136
3 b	0.0063	0.135	0.140

Fig. S6 ¹H NMR spectral changes observed for the dye **3b** on addition of various amounts of cyanide in DMSO-d₆.

3a-CN

3b-CN

Fig. S7 Optimized geometries for 3a, 3b, 3a-CN-, and 3b-CN-.

Fig. S8 Absorbance response of 3b upon addition of 10 equiv of other anions and 2 eq of CN-

Fig. S9 Ratiometric absorbance changes (A₃₃₀/A₄₀₅) of 3b on addition of 2 equiv of CN⁻ and 10 equiv of other anions. Black bars indicate the blank and various anions, and red bars indicate the addition of CN⁻ to the interfering anions.

Dye	λ_{max} , nm	f	configuration
3a	457.7	1.3582	HOMO-1 \rightarrow LUMO (96%)
	338.5	0.1077	HOMO-2 \rightarrow LUMO (98%)
	331.5	0.6820	$HOMO-2 \rightarrow LUMO+1 (93\%)$
	310.3	0.4822	HOMO-3 \rightarrow LUMO (63%), HOMO-1 \rightarrow LUMO+2 (28%)
3b	492.1	1.3592	$HOMO \rightarrow LUMO (99\%)$
	377.5	0.3741	HOMO-2 \rightarrow LUMO (89%), HOMO \rightarrow LUMO+1 (11%)
	361.7	0.3144	$HOMO-2 \rightarrow LUMO+1 (92\%)$
	329.6	0.1159	HOMO-3 \rightarrow LUMO (66%), HOMO \rightarrow LUMO+2 (32%)
3a-CN	330.7	1.2431	$HOMO-1 \rightarrow LUMO$
3b-CN	373.6	1.4307	$HOMO-2 \rightarrow LUMO$

Table S1 Computed vertical transition energies and their oscillator strengths and configurations for the dyes.

lab spaacr-11 iitm_carbonshort CDCl3 /opt/topspin nmr 6

Fig. S11 ¹³C-NMR spectra of compound 2a.

Fig. S12 ¹H NMR spectra for 2b in CDCl₃.

Fig. S13 ¹³C NMR spectra for 2b in CDCl₃.

Fig. S14 ¹H NMR spectra for 3a in CDCl₃.

S15¹³C NMR spectra for **3a** CDCl₃.

Fig.

Fig. S16 ¹H NMR spectra for 3b in CDCl₃.

Fig. S17 ¹³C NMR spectra for **3b** in CDCl₃.