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Materials and general methods

Materials. Dichloromethane was dried with calcium chloride overnight and distilled under a nitrogen 

atmosphere before use. All other reagents were analytical grade and used as received without further 

purification unless specified.

Measurements. 1H NMR and 13C NMR spectra were measured on a Bruker AV 400 spectrometer at 

298 K in deuterated solvents. Mass spectrum was measured on a Bruker BioApex FTMS instrument. 

Field emission scanning electron microscopy (FE-SEM) images were taken on a FEI Sirion 200 

electron microscope operating at 5 kV or 10 kV. Transmission electron micrographs (TEM) were 

recorded on an electron microscope at 200 kV. Dynamic light scattering (DLS) was measured on a 

Horiba LB-550 Particle Size Analyzer.

Preparation of gels. To a solution of one amphiphilic calix[4]arene in ethanol was added deionized 

water by a syringe. The resultant suspension was shaken gently for several minutes and then let it stand 

at room temperature till a gel formed.

Preparation of electron microscopy sample. The SEM sample was prepared by dropping the 

suspension or gel on the glass surface and dried at ambient condition. The SEM image was obtained 

after platinum sputtering treatment. The TEM sample was prepared by dropping the suspension on the 

surface of copper wire mesh substrate and then dried under room temperature before the TEM 

experiment.

Synthetic procedure of silica nanotubes. Under gently stirring at room temperature with magnetic 

stir at the rate about 60 r/min, 0.020 mL of solution of tetraethoxylsilane (0.134 mmol) and 3-
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aminopropyltrimethoxysilane (0.05 mmol) in methanol (1.9 ml) was added into the hydrogel of 2a (2.5 

mM, 2 mL) by a syringe. The reaction mixture was then allowed to stand for 12 h at room temperature. 

The precipitates were collected by centrifugation and washed with boiling triethylamine (2×10 mL), 

and then with boiling THF (3×10 mL) for 2 h, respectively, in order to remove the calixarene template. 

Finally, white silica powders were obtained.

Synthesis of the amphiphilic calix[4]arenes 2a – 2d
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Scheme S1 The synthetic routes of the amphiphilic calix[4]arenes 2a – 2d.

Compound 1a – 1c 1 (0.46 mmol) was dissolved in dry dichoromethane (5 mL) into which a solution of 

corresponding anhydride (0.51 mmol) in dry dichoromethane (5 mL) was added dropwise. After the 

addition was finished, the reaction mixture was continued to stir for 2 hours at room temperature. As 

the reaction proceeded, a large amount of white precipitates appeared. Upon completion of the reaction 

(monitored by TLC), the solvent was removed under vacuum. The residue was re-crystallized with 

ethanol and water to give a white powder.

Compound 2a: yield: 93%; M.p.: 246.2 – 248.5 oC; IR (KBr): ν (cm-1) 3312, 2962, 2928, 2875, 2658, 

1722, 1658, 1604, 1548, 1217, 1005, 866; 1H NMR (400 MHz, CD3OD): δ (ppm) 6.88 (s, 8H), 4.47 (d, 

J = 13.2 Hz, 4H), 3.87 (t, J = 7.6 Hz, 8H), 3.12 (d, J = 13.2 Hz, 4H), 2.64 (t, J = 5.6 Hz, 8H), 2.57 (t, J 

= 5.6 Hz, 8H), 2.00 – 1.95 (m, 8H), 1.04 (t, J = 7.6 Hz, 12H); 13C NMR (100 MHz, CD3OD): δ (ppm) 
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175.0, 170.9, 153.0, 134.7, 132.2, 120.5, 76.7, 30.7, 30.7, 28.6, 23.0, 9.4; ES+ HRMS m/z calcd for 

C56H68O16N4Na 1075.4528 [M+Na], found 1075.4506 [M+Na].

Compound 2b: yield: 90%; M.p.: 224.5 – 225.8 oC; IR (KBr): ν (cm-1) 3305，2959, 2870, 1723, 

1658.5, 1603, 1548, 1470, 1417, 1213, 868; 1H NMR (400MHz, DMSO-d6): δ (ppm) 12.04(s, 4H), 

9.56 (s, 4H), 6.92 (s, 8H), 4.33 (d, J = 12.8 Hz, 4H), 3.81 (t, J = 6.8 Hz, 8H), 3.06 (d, J = 12.8 Hz, 4H), 

2.44 (m, 16H), 1.91 – 1.84 (m, 8H), 1.45 – 1.39 (m, 8H), 0.97 (t, J = 7.6 Hz, 12H); 13C NMR (100 

MHz, DMSO-d6): δ (ppm) 174.3, 169.7, 152.2, 134.5, 133.6, 119.8, 75.0, 32.2, 31.3, 31.2, 29.2, 19.4, 

14.4; ES+ HRMS m/z calcd for C60H76O16N4Na 1131.5154 [M+Na], found 1131.5148 [M+Na].

Compound 2c: yield: 89%; M.p.: 256.9 – 228.7 oC; IR (KBr): ν (cm-1) 3308, 2962, 2958, 2920, 2865, 

1720, 1661, 1604, 1550, 1471, 1213, 867; 1H NMR (400 MHz, DMSO-d6): δ (ppm) 9.54 (s, 4H), 6.91 

(s, 8H), 4.33 (d, J = 12.8 Hz, 4H), 3.86 (t, J = 6.8 Hz, 8H), 3.06 (d, J = 12.8 Hz, 4H), 2.45 (m, 16H), 

1.88 (m, 8H), 1.38 – 1.37 (m, 16H), 0.92 (t, J = 6.8 Hz, 12H); 13C NMR (100 MHz, DMSO-d6): δ 

(ppm) 174.3, 169.7, 152.2, 134.5, 133.6, 119.8, 75.3, 31.3, 31.1, 29.8, 29.2, 28.4, 22.8, 14.4; ES+ 

HRMS m/z calcd for C64H84O16N4Na 1187.5780 [M+Na], found 1187.5812 [M+Na].

Compound 2d: yield: 90%; M.p.: 241.9 – 243.0 oC; IR (KBr): ν (cm-1) 3321, 2963, 2875, 1714, 

1654.8, 1603, 1548, 1470, 1417, 1218, 867; 1H NMR (400 MHz, DMSO-d6): δ (ppm) 11.95 (s, 4H), 

9.47 (s, 4H), 6.94 (s, 8H), 4.34 (d, J = 12.8 Hz, 4H), 3.77 (t, J = 6.8 Hz, 8H), 3.06 (d, J = 12.8 Hz, 4H), 

2.24 – 2.20 (m, 16H), 1.92 – 1.87 (m, 8H), 1.75 – 1.72 (m, 8H), 0.96 (t, J = 7.6 Hz, 12H); 13C NMR 

(100 MHz, DMSO-d6): δ (ppm) 174.6, 170.4, 152.3, 134.5, 132.6, 119.9, 76.9, 35.6, 33.5, 31.3, 23.1, 

20.9, 10.6; ES+ HRMS m/z calcd for C60H76O16N4Na 1131.5154 [M+Na], found 1131.5167 [M+Na].
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Figure S1. 1H NMR spectrum of 2a in CD3OD.

Figure S2. 13C NMR spectrum of 2a in CD3OD.
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Figure S3. IR spectrum of 2a.

Figure S4. HRMS spectrum of 2a.
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Figure S5. 1H NMR spectrum of 2b in DMSO-d6.

Figure S6. 13C NMR spectrum of 2b in DMSO-d6.
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Figure S7. IR spectrum of 2b.

Figure S8. HRMS spectrum of 2b.
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Figure S9. 1H NMR spectrum of 2c in DMSO-d6.

Figure S10. 13C NMR spectrum of 2c in DMSO-d6.
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Figure S11. IR spectrum of 2c.

Figure S12. HRMS spectrum of 2c.
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Figure S13. 1H NMR spectrum of 2d in DMSO-d6. 

Figure S14. 13C NMR spectrum of 2d in DMSO-d6.

10

OO O

NNH N HN

O

O O O O

HOOC HOOC COOH COOH

H H

OO O

NNH N HN

O

O O O O

HOOC HOOC COOH COOH

H H



Figure S15. IR spectrum of 2d.

Figure S16. HRMS spectrum of 2d.
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