Supplementary Information

Supramolecular Hydrogel Based on Amphiphilic Calix[4]arene and Its Application in the Synthesis of Silica Nanotubes

Song Song, a Jin-Hua Wang, Hai-Tao Feng, Zhi-Hua Zhu, Yan-Song Zheng*a

^{*a*} Key Laboratory for Large-Format Battery materials and System, Ministry of Education, *School of Chemistry and Chemical Engineer, Huazhong University of Science and Technology, Wuhan, China. E-mail: zyansong@hotmail.com*

Materials and general methods

Materials. Dichloromethane was dried with calcium chloride overnight and distilled under a nitrogen atmosphere before use. All other reagents were analytical grade and used as received without further purification unless specified.

Measurements. ¹H NMR and ¹³C NMR spectra were measured on a Bruker AV 400 spectrometer at 298 K in deuterated solvents. Mass spectrum was measured on a Bruker BioApex FTMS instrument. Field emission scanning electron microscopy (FE-SEM) images were taken on a FEI Sirion 200 electron microscope operating at 5 kV or 10 kV. Transmission electron micrographs (TEM) were recorded on an electron microscope at 200 kV. Dynamic light scattering (DLS) was measured on a Horiba LB-550 Particle Size Analyzer.

Preparation of gels. To a solution of one amphiphilic calix[4]arene in ethanol was added deionized water by a syringe. The resultant suspension was shaken gently for several minutes and then let it stand at room temperature till a gel formed.

Preparation of electron microscopy sample. The SEM sample was prepared by dropping the suspension or gel on the glass surface and dried at ambient condition. The SEM image was obtained after platinum sputtering treatment. The TEM sample was prepared by dropping the suspension on the surface of copper wire mesh substrate and then dried under room temperature before the TEM experiment.

Synthetic procedure of silica nanotubes. Under gently stirring at room temperature with magnetic stir at the rate about 60 r/min, 0.020 mL of solution of tetraethoxylsilane (0.134 mmol) and 3-

aminopropyltrimethoxysilane (0.05 mmol) in methanol (1.9 ml) was added into the hydrogel of 2a (2.5 mM, 2 mL) by a syringe. The reaction mixture was then allowed to stand for 12 h at room temperature. The precipitates were collected by centrifugation and washed with boiling triethylamine (2×10 mL), and then with boiling THF (3×10 mL) for 2 h, respectively, in order to remove the calixarene template. Finally, white silica powders were obtained.

Synthesis of the amphiphilic calix[4]arenes 2a – 2d

Scheme S1 The synthetic routes of the amphiphilic calix[4] arenes 2a - 2d.

Compound $1a - 1c^{-1}$ (0.46 mmol) was dissolved in dry dichoromethane (5 mL) into which a solution of corresponding anhydride (0.51 mmol) in dry dichoromethane (5 mL) was added dropwise. After the addition was finished, the reaction mixture was continued to stir for 2 hours at room temperature. As the reaction proceeded, a large amount of white precipitates appeared. Upon completion of the reaction (monitored by TLC), the solvent was removed under vacuum. The residue was re-crystallized with ethanol and water to give a white powder.

Compound 2a: yield: 93%; M.p.: 246.2 – 248.5 °C; IR (KBr): v (cm⁻¹) 3312, 2962, 2928, 2875, 2658, 1722, 1658, 1604, 1548, 1217, 1005, 866; ¹H NMR (400 MHz, CD₃OD): δ (ppm) 6.88 (s, 8H), 4.47 (d, J = 13.2 Hz, 4H), 3.87 (t, J = 7.6 Hz, 8H), 3.12 (d, J = 13.2 Hz, 4H), 2.64 (t, J = 5.6 Hz, 8H), 2.57 (t, J = 5.6 Hz, 8H), 2.00 – 1.95 (m, 8H), 1.04 (t, J = 7.6 Hz, 12H); ¹³C NMR (100 MHz, CD₃OD): δ (ppm)

175.0, 170.9, 153.0, 134.7, 132.2, 120.5, 76.7, 30.7, 30.7, 28.6, 23.0, 9.4; ES⁺ HRMS m/z calcd for C₅₆H₆₈O₁₆N₄Na 1075.4528 [M+Na], found 1075.4506 [M+Na].

Compound 2b: yield: 90%; M.p.: 224.5 – 225.8 °C; IR (KBr): v (cm⁻¹) 3305, 2959, 2870, 1723, 1658.5, 1603, 1548, 1470, 1417, 1213, 868; ¹H NMR (400MHz, DMSO-d₆): δ (ppm) 12.04(s, 4H), 9.56 (s, 4H), 6.92 (s, 8H), 4.33 (d, J = 12.8 Hz, 4H), 3.81 (t, J = 6.8 Hz, 8H), 3.06 (d, J = 12.8 Hz, 4H), 2.44 (m, 16H), 1.91 – 1.84 (m, 8H), 1.45 – 1.39 (m, 8H), 0.97 (t, J = 7.6 Hz, 12H); ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) 174.3, 169.7, 152.2, 134.5, 133.6, 119.8, 75.0, 32.2, 31.3, 31.2, 29.2, 19.4, 14.4; ES⁺ HRMS m/z calcd for C₆₀H₇₆O₁₆N₄Na 1131.5154 [M+Na], found 1131.5148 [M+Na].

Compound 2c: yield: 89%; M.p.: 256.9 – 228.7 °C; IR (KBr): v (cm⁻¹) 3308, 2962, 2958, 2920, 2865, 1720, 1661, 1604, 1550, 1471, 1213, 867; ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 9.54 (s, 4H), 6.91 (s, 8H), 4.33 (d, *J* = 12.8 Hz, 4H), 3.86 (t, *J* = 6.8 Hz, 8H), 3.06 (d, *J* = 12.8 Hz, 4H), 2.45 (m, 16H), 1.88 (m, 8H), 1.38 – 1.37 (m, 16H), 0.92 (t, *J* = 6.8 Hz, 12H); ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) 174.3, 169.7, 152.2, 134.5, 133.6, 119.8, 75.3, 31.3, 31.1, 29.8, 29.2, 28.4, 22.8, 14.4; ES⁺ HRMS m/z calcd for C₆₄H₈₄O₁₆N₄Na 1187.5780 [M+Na], found 1187.5812 [M+Na].

Compound 2d: yield: 90%; M.p.: 241.9 – 243.0 °C; IR (KBr): v (cm⁻¹) 3321, 2963, 2875, 1714, 1654.8, 1603, 1548, 1470, 1417, 1218, 867; ¹H NMR (400 MHz, DMSO-d₆): δ (ppm) 11.95 (s, 4H), 9.47 (s, 4H), 6.94 (s, 8H), 4.34 (d, J = 12.8 Hz, 4H), 3.77 (t, J = 6.8 Hz, 8H), 3.06 (d, J = 12.8 Hz, 4H), 2.24 – 2.20 (m, 16H), 1.92 – 1.87 (m, 8H), 1.75 – 1.72 (m, 8H), 0.96 (t, J = 7.6 Hz, 12H); ¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) 174.6, 170.4, 152.3, 134.5, 132.6, 119.9, 76.9, 35.6, 33.5, 31.3, 23.1, 20.9, 10.6; ES⁺ HRMS m/z calcd for C₆₀H₇₆O₁₆N₄Na 1131.5154 [M+Na], found 1131.5167 [M+Na].

References

F. Sansone, E. Chierici, A. Casnati and R. Ungaro, *Org. Biomol. Chem.*, 2003, 1, 1802; Z. Li, J. Ma, J. Chen, Y. Pan, J. Qiang and L. Wang, *Chin. J. Chem.*, 2009, 27, 2031.

Supporting figures

Figure S2. ¹³C NMR spectrum of 2a in CD₃OD.

Analysis Info Analysis Name Method Sample Name Comment	D:\Data\ZhengYS\zheng-song-201403014-1.d tune_wide.m zheng-song-201403014-1			Acquisition Date Operator Instrument / Ser#	3/14/2014 3:49:15 PM BDAL@DE micrOTOF 10401
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Valv	0.4 Bar r 180 °C 4.0 l/min ve Waste
Intens: ×104 5 4 3 2 1 1	700 800 	935.4430 900 1000 #(7-110)	1075.4506	HOOC O N 1200 1300	$\begin{array}{c} 000 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $

Figure S4. HRMS spectrum of 2a.

Figure S6. ¹³C NMR spectrum of 2b in DMSO-d₆.

Figure S7. IR spectrum of 2b.

Analysis Info Analysis Name Method Sample Name Comment	D:\Data\ZhengYS\zheng-song-201403014-2.d tune_wide.m zheng-song-201403014-2			Acquisition Date Operator Instrument / Ser	BDAL # micrO	2014 3:54:14 PM @DE TOF 10401
Acquisition Para Source Type Focus Scan Begin Scan End	ameter ESI Active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebuli Set Dry He Set Dry Ga Set Divert	zer ater Is Valve	0.4 Bar 180 °C 4.0 I/min Waste
Intens. ×10 ⁴ 3- 2- 1- 6-	675.6750		-COOH =0		1131.	5148 1200 m/z

Figure S10. ¹³C NMR spectrum of 2c in DMSO-d₆.

Figure S11. IR spectrum of 2c.

Analysis Info	D:\Data\ZhengYS\	S\zhena-sona-201403014-3 d		Acquisition Date	3/14/2014 3:58:19 PM
Method Sample Name Comment	tune_wide.m zheng-song-201403014-3			Operator Instrument / Ser#	BDAL@DE micrOTOF 10401
Acquisition Par	ameter				
Source Type Focus Scan Begin Scan End	ESI Active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Val	er 0.4 Bar er 180 °C 4.0 l/min lve Waste
Intens. x10 ⁴ 3 - 2 - 1 - 1	000 1025 	HOOC- O=O= 1065.5828 1050 1075 1100 1#(5-72)		1187.5 1165.5985 1150 1175	5812 1200 1225 m/z

Figure S12. HRMS spectrum of 2c.

Figure S14. ¹³C NMR spectrum of 2d in DMSO-d₆.

Figure S15. IR spectrum of 2d.

Analysis Info	D:\Data\ZhengYS\zheng-song-201403014-4.d tune_wide.m zheng-song-201403014-4			Acquisition Date	3/14/2014 4:03:10 PM	
Method Sample Name Comment				Operator Instrument / Ser#	BDAL@DE micrOTOF 10401	
Acquisition Par	ameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar	
Focus Scan Begin Scan End	Active 50 m/z 3000 m/z	Set Capillary Set End Plate Offset	4500 V -500 V	Set Dry Heate Set Dry Gas Set Divert Val	er 180 °C 4.0 l/min Ive Waste	
Intens.	1		HOOC	соон СООН		
2.0	Ē		HOUC	1131.51	67	
	3					
1.5	1					
1.0	3					
0.5	881.4	1716 99	5.5025			
0.0	7 8 <u>00 850</u>	900 950	1000 10	50 1100 1	1150 1200 m/z	
		#(6-71)				

Figure S16. HRMS spectrum of 2d.