Electronic Supplementary Information (ESI) for the article entitled: Validation of the 2,3-dihydroxi-propionyl group in selenium speciation by chemical synthesis and LC-MS analyses

by

Orsolya Egressy-Molnár^a. Anna Magyar^b. Attila Gyepes^a. Mihály Dernovics^a*

published in RSC Advances (DOI 10.1039/c4ra02660h)

^aDepartment of Applied Chemistry. Corvinus University of Budapest. 29-33. Villányi út. 1118 Budapest. Hungary

^bResearch Group of Peptide Chemistry. Eötvös Loránd University. Hungarian Academy of Sciences.

112 POB 32. 1518 Budapest. Hungary

*Corresponding author. E-mail: mihaly.dernovics@uni-corvinus.hu

Tel.: +3614826161. fax: +3614664272

SM – T	able 1	HPLC	instrumental	parameters
--------	--------	------	--------------	------------

Method	Column	Eluents	Gradient	Flow rate	Injection	Other
preparative scale RP- HPLC- UV	Agilent Zorbax XDB-C8 5 µm. 9.4x250 mm	A: H2O B: ACN	0-5 min:50% B 5-25 min: ↑ 100% B 25-40 min: 100% B 40-41 min: ↓ 50%B 41-50 min: 50% B	2.0 ml/min	100 µl	detection at 220 nm
preparative scale SAX- HPLC- ICP- MS	Agilent Zorbax SAX 5 µm. 9.4x250 mm	A: 10 mmol pH=5.0 ammonium acetate B: 250 mmol pH=5.0 ammonium acetate	0-3 min: 0% B 3-20 min: ↑ 100% B 20-40 min: 100% B 40-42 min: ↓ 0% B 42-50 min: 0% B	5.0 ml/min	100 µl	flow rate divided to 4 ml/min and 1 ml/min. Only 1 ml/min entering ICP-MS
preparative scale RP- HPLC- ICP- MS	Agilent Zorbax XDB-C8 5 μm. 9.4x250 mm	A: 0.1 V/V % HCOOH in H ₂ O B: ACN	0-10 min: 3% B	3.0 ml/min	100 µl	flow rate divided to 2.4 ml/min and 0.6 ml/min. Only 0.6 ml/min entering ICP-MS
analytical scale RP- HPLC- ESI- QTOF-MS	Agilent Zorbax XDB-C18 3.5 μm. 2.1x50 mm	A: 0.1 V/V % HCOOH in H ₂ O B: 0.1 V/V % HCOOH in ACN	0-5 min:5% B 5-12 min: ↑ 95% B 12-14 min: 95% B 14-14.5 min: ↓ 5% B	350 µl/min	10 µl	
analytical scale SAX- HPLC- ICP- MS	Hamilton PRPX- 100 10 μm. 4.1x250 mm	A: 10 mmol pH=5.0 ammonium acetate B: 250 mmol pH=5.0 ammonium acetate	0-5 min: 0% B 5-15 min: ↑ 100% B 15-35 min: 100% B 35-36 min: ↓ 0% B 36-42 min: 0% B	1.5 ml/min	100 µl	

SM – Table 2 Instrumental parameters of the ESI-QQQMS set-up.

Qtrap 3200 triple quadrupole-linear ion trap m	ass spectrometer (Applied Biosystems)
ESI source	Turbo V interface and Turbo ion Spray probe
Operation mode	Negative
Ion spray voltage. V	-4500
Curtain gas (nitrogen). psi	15
lon source gas. psi	10
Turbo gas. spi	10
Desolvation temperature. °C	30
Collision activated dissociation gas. a. u.	10
Declustering potential. eV	55
Full scan recording range. m/z	100-1100
MS/MS recording range. m/z	50-1100

*

SM – Table 3 Instrumental parameters of the HPLC-ESI-QTOFMS set-up.

6530 Accurate Mass QTOF LC-MS (Agilent)				
ESI source	Dual ESI (Agilent)			
Operational mode	positive			
Precursor ion isolation in MS/MS mode	medium (4 m/z)			
Mass accuracy in MS mode	< 2 ppm			
Mass resolution	> 10000			
Detection frequency	4 GHz			
Fragmentor voltage	150 V			
Curtain voltage	65 V			
Drying gas	13 L/min			
Capillary voltage	800 V			
Nebulizer pressure	40 psig			
Gas temperature	325 °C			
Data analysis software Mass Hunter Acquisition B.02.01(B211630) with SP3 Mass Hunter Qualitative Analysis B.03.01 (Build 3.1.346.0) with SP3				

SM – Table 4 Mass accuracy information of the four synthesized selenium species (in bold) and their MS/MS fragments.

	measured	calculated	ppm difference
[C ₁₆ H ₂₇ N₄O ₈ SSe]⁺	563.0555	563.0562	-1.31
$[C_8H_{13}O_4N_2SeS]^+$	312.9720	312.9761	-13.2
[C ₆ H ₁₀ NO ₅ Se]⁺	255.9709	255.9719	-3.83
$[C_{8}H_{11}O_{4}N_{2}S]^{+}$	231.0438	231.0429	4.03
[C ₃ H ₆ NO ₂ Se]⁺	167.9548	167.9558	-6.25
[C₅H ₈ NO₃]⁺	130.0490	130.0498	-6.15
[C ₁₃ H ₂₁ N₄O ₈ SSe]⁺	475.0396	475.0400	-0.91
[C ₁₁ H ₁₈ N ₃ O ₆ SeS]⁺	400.0027	400.0075	-11.9
[C ₈ H ₁₆ N ₃ O ₅ SeS]⁺	345.9925	345.9970	-13.0
[C ₅ H ₉ N ₂ O ₃ SSe]⁺	256.9455	256.9499	-17.1
[C ₈ H ₁₁ N ₂ O ₄ S]⁺	231.0398	231.0434	-15.8
[C ₃ H ₆ NO ₂ Se] ⁺	167.9532	167.9558	-15.8
$[C_5H_8NO_3]^+$	130.0480	130.0498	-13.5
[C ₁₂ H ₂₁ N ₂ O ₁₀ Se ₂]⁺	512.9534	512.9530	0.78
[C ₇ H ₁₀ N ₂ O ₅ Se ₂] ⁺	361.9084	361.9046	10.5
[C ₆ H ₁₀ NO ₅ Se ₂]⁺	335.8921	335.8889	9.41
[C ₆ H ₈ NO₄Se ₂] ⁺	317.8837	317.8784	16.7
$[C_6H_{10}SeNO_5]^+$	255.9738	255.9719	7.42
[C ₃ H ₆ NO ₂ Se]⁺	167.9573	167.9558	8.93
[C ₉ H ₁₇ N ₂ O ₇ Se ₂] ⁺	424.9361	424.9368	-1.72
$[C_{6}H_{10}NO_{5}Se_{2}]^{+}$	335.8910	335.8889	6.13
[C ₆ H ₈ NO₄Se ₂] ⁺	317.8810	317.8784	8.24
[C ₆ H ₁₀ SeNO ₅]⁺	255.9721	255.9719	0.78
[C ₃ H ₆ NO ₂ Se ₂]⁺	247.8729	247.8740	-4.60
[C ₃ H ₆ NO ₂ Se] ⁺	167.9561	167.9558	1.79

*

SM – Figure 1 Proposed fragmentation mechanisms of the conjugate of 2,3-DHP-Sec and Sec (m/z 424).

SM – Figure 2 Proposed fragmentation mechanisms of di-N-2,3-DHP-Sec (m/z 512).

SM – Figure 3 Proposed fragmentation mechanisms of the conjugate of Sec and glutathione (m/z 475).

H₂N

COOH

SM – Figure 4 Proposed fragmentation mechanisms of the conjugate of 2,3-DHP-Sec and glutathione (m/z 563).

SM – Figure 5 Pathways of syntheses.

ċсоон

