Electronic Supplementary Information

A new site-isolated acid-base bifunctional metal-organic framework for one -pot tandem reaction

Yu-Ri Lee^a, Young-Min Chung^{b*}, and Wha-Seung Ahn^{a*}

^aDepartment of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, Kor ea

^b Department of Nano& Chemical Engineering, Kunsan National University, 558 Daehak-ro, Kunsan, Jeollabuk-Do, 573-701, Korea.

* Corresponding Author

Wha-Seung Ahn (whasahn@inha.ac.kr), Young-Min Chung (ymchung@kunsan.ac.kr)

Chemicals

Chromium(III) nitrate nonahydrate (Cr(NO₃)₃·9H₂O,99%), chromium(VI) oxide (Cr O₃,99%), 1,4-benzenedicarboxylic acid (H₂BDC, 98%), hydrofluoric acid (HF, 47% aq.), hyd rochloric acid (HCl, 37% aq.) and tin(II) chloride dehydrate (SnCl₂, 98%) were purchased fro m Aldrich. Ethanol (>99.5%), methanol (>99.5%), and ammonium fluoride (NH₄F, >99.9%) were supplied from Samchun chemicals in Korea. 2-Amino-1,4-benzenedicarboxylic acid (H₂BDC-NH₂, 99%), monosodium 2-sulfoterephthlate (H₂BDC-SO₃Na, 98%), and 2-nitrobenzen e-1,4-dicarboxylic acid (H₂BDC-NO₂, 98%) was purchased from TCI (Japan). Sulfonic acid and primary amine-bound polymer resins (K2621, VP OC 1065) were supplied by Lanxess (Germany).

Catalyst preparation

Synthesis of MIL-101: In a typical experiment, Cr(NO₃)₃·9H₂O (1.6 g, 4mmol), H₂B

DC (0.64 g, 4mmol), HF (0.02 g, 1mmol) and H₂O (19.2 mL) were mixed under stirring. The substrate mixture was transferred to a Teflon-lined steel autoclave and heated at 493 K for 8 h in a convection oven. After the hydrothermal reaction, the mixture was maintained at 423 K f or 1 h, and cooled naturally to room temperature. The green solid product was filtered throug h 100 μ m sieves to remove the crystalline BDC and then through 25 μ m filter paper to separat e the MIL-101 product. The separated MIL-101 product was washed three times with deioniz ed water, and purified further by following steps; (i) soaked in H₂O at 343 K for 12 h, (ii) hot ethanol washing at 353 K for 24 h, (iii) an aqueous 0.03 M NH₄F solution washing at 333 K f or 12 h, and (iv) hot H₂O at 333 K for 12 h. The purified sample was dried in a vacuum at 42 3 K for 12 h after filtration [12].

Synthesis of MIL-101-NH₂: $Cr(NO_3)_3 \cdot 9H_2O$ (1.25 g, 3.13 mmol) and H₂BDC-NH₂ (0.58 g, 3.15 mmol) were added to H₂O (17.5 mL) and stirred for 3 h at room temperature. Th e reaction solution was heated at 403 K for 24 h in a convection oven. After the synthesis, the obtained dark-green MIL-101-NH₂ crystals were filtered and washed three times with H₂O an d once with ethanol. Finally, residual solvent was removed at 343 K for 12h under vacuum co ndition [13].

Synthesis of MIL-101-SO₃H: CrO₃ (0.50 g, 5 mmol), H₂BDC-SO₃Na(1.34 g, 5 mmol), and 12 M HCl (0.36 g, 10 mmol) were dissolved in H₂O (20 mL), then transferred to a Teflo n-lined steel autoclave. This acidic solution was heated at 453 K for 6 days under hydrotherm al condition. After the reaction, the resulting greenish solid was filtered and washed with H₂O and methanol. The sample was dried at 353K for 12 min a vacuum oven [10].

Synthesis of MIL-101-NO₂-SO₃H: CrO₃ (0.5 g, 5 mmol), H₂BDC-SO₃Na(0.67 g, 2.5 mmol), H₂BDC-NO₂(0.53 g, 2.5 mmol), and 12 M hydrochloric acid (0.72 g, 20 mmol) were added in H₂O (25 mL), and stirred at 323 K until dissolved. The highly acidic solution was qu ickly transferred to a Teflon-lined steel autoclave and then heated at 453 K for 6 days in a con vention oven. After cooling to room temperature, the dark green-colored product was washed several times with H₂O, methanol, ethanol, and dried at 343 K for 6 h under vacuum conditio n.

Synthesis of MIL-101-NH₂-SO₃H: The resulting MIL-101-NO₂-SO₃H (0.1 g) was dehydrated at 398 K for 4 h and suspended in 20 mL of ethanol. To this suspension, $SnCl_2 \cdot 2$ H₂O (3.26g) was added slowly and stirred for 2 h at room temperature. The mixture was heat

ed at 343 K for 6 h in an oven and the product was centrifuged and soaked in 20 mL of 12 M hydrochloric acid for 24 h. After filteration, the greenish solid was washed with H₂O and etha nol,dried at 343 K, and stored in a desiccator.

Catalyst characterization

X-ray powder diffraction (XRD) anlaysis was performed on a Rigaku diffractometer using CuK α (λ = 1.54 Å) radiation at 0.5 °/min. N₂ adsorption and desorption isotherms were measured in a BELsorp-Max (BEL, JAPAN) at 77K. The specific surface areas and pore volume of samples were calculated by the BET (Brunauer-Emmett-Teller) method, and pore size distribution by Horvath-Kawazoe (HK) method. Prior to the adsorption, MIL-101 and MIL-101-NH₂were activated at 423 K for 12 h under vacuum condition, whereas MIL-101-SO₃H, MIL-101-NO₂-SO₃H, and MIL-101-NH₂-SO₃H were activated at 398 K for 6 h in vacuum. FT-IR spectra were obtained on a VERTEX 80V FT-IR spectrometer (Bruker) at ambient conditions. The sulfur and nitrogen contents in the MOFs were measured using an elemental analysis (Flash EA1112, Thermo). Ammonia temperature-programmed desorption (NH₃-TPD) profiles of the MIL-101 and its functionalized forms were obtained using a homemade TPD apparatus. Before ammonia adsorption, samples were treated in a helium flow of 100 ml/min at 373 K for 2 h. The samples were subsequently exposed to pulses of ammonia (1,000 ppm with H₂ balance) until saturation, and then purged with helium flow at 373 K for 1 h. The temperature of the samples was increased to 673 K at a ramping rate of 5 K/min, and the desorbed ammonia was detected using a quadrupole mass unit (Agilent 5000A).

Catalytic activity test

One-pot tandem conversion of benzaldehydedimethylacetal 1 to trans-1-nitro-2-phen ylethylene 3 was carried out in liquid phase under atmospheric pressure. Before use, MIL-10 1 series catalysts were activated at 393 K for 4 h under vacuum condition. Polymer resin catal ysts stored in a desiccator after washing with H_2O and nitromethane were directly used witho ut further activation. In a typical run, 1 mmol of benzaldehydedimethylacetal, 0.1 g of o-xyle ne (internal standard), 5 ml of nitromethane, and 0.05 g of activated catalyst were introduced

to a 25 ml three-necked round bottom flask equipped with a condenser and a thermocouple. When temperature reached to 323 K, reaction was started by stirring (800 rpm) for 6 h under N_2 . After a reaction, catalyst was separated from reaction product by centrifugation. The react ion product was analyzed by HP 5890 Gas Chromatography (GC) equipped with Carbowax c olumn with a Flame Ignition Detector (FID). The recovered catalyst was thoroughly washed with nitromethane and acetone, and reused for recycle runs.

Fig. S1. XRD patterns of MIL-101 and its functionalized forms; (a) MIL-101 simulated, (b) MIL-101, (c) MIL-101-SO₃H, (d) MIL-101-NH₂, (e) MIL-101- NO₂-SO₃H, and (f) MIL-101- NH₂-SO₃H.

Fig. S2. N₂ adsorption–desorption isotherms of MIL-101 and its functionalized forms.

Fig. S3 Pore size distribution curves calculated by Horvath-Kawazoe (HK) method of (a) MIL-101, (b) MIL101-SO₃H, (c) MIL101-NH₂, and (d) MIL101-NH₂-SO₃H.

The pore size distribution curves of the MIL-101 and its functionalized forms were shown above exhibiting two different monodisperse pore sizes [13]. While the average pore sizes of MIL-101 were 1.71 and 2.31 nm, those of its functionalized forms show smaller values in MIL101-SO₃H with 1.63 and 2.23nm, MIL-101-NH₂ with 1.58 and 2.15 nm, and MIL-101-NH₂-SO₃H with 1.60 and 2.20 nm (and also the pore size distribution became slightly broader) due to the presence of $-NH_2$ and $-SO_3H$ groups blocking the pores in the MIL-101.

Fig. S4. NH₃-TPD profiles of MIL-101 and its functionalized structures; (a) MIL-101, (b) MI L-101-SO₃H, (c) MIL-101-NH₂, and (d) MIL-101-NH₂-SO₃H.

Fig. S5. Recycle test of MIL-101-NH₂-SO₃H for one-pot tandem reaction.

Catalyst	Sulfonic acid (mmol/g)	Primary amine (mmol/g)
MIL-101	-	-
MIL-101-SO ₃ H	2.22	-
MIL-101-NH ₂	-	2.56
MIL-101-NH ₂ -SO ₃ H	0.68	1.26

Table S1. Elemental analysis of MIL-101 and its functionalized forms

Table S2. Catalytic performance of resin catalysts for one-pot tandem reaction ^a

Entry	Catalyst	Conv. (%)	Selectivity (%)	
			2	3
1	SO ₃ H-bound resin ^b	100	100	-
2	NH ₂ -bound resin ^c	-	-	-
3	NH ₂ -bound resin ^c	100 ^d	-	100

^a Reaction conditions: catalyst (0.05 g), benzaldehydedimethylacetal (1 mmol), o-xylene (0.1 g), nitromethane (5 ml), 323 K, 6h; ^b commercial resin (K2621, Lanxess); ^c commercial resin (VP OC 1065, Lanxess); ^d benzaldehyde **2** was used as a reactant instead of benzaldehydedimethylacetal **1**.

Catalyst	Temp. (K)	Time (h)	Yield of 3 (%)	Reference
MIL-101-NH ₂ -SO ₃ H	323	6	99.3	Present work
PMO-NH ₂ -SO ₃ H ^a	363	20	97.5	[3]
HPA-NH ₂ -SBA-15 ^b	323	12	97	[4]
MIL-101-NH ₂ -SO ₃ H ^c	363	24	97.0	[8]
AB-MCM-41-co ^d	363	7	94.5	[20]
AB-MCM-41-g ^e	363	1.5	98.9	[20]

Table S3. Catalytic activities of various catalysts in deacetalization-Henry reaction

^a Bifunctional Periodic mesoporous organosilicas (PMOs) containing organic amines and sulf onic acid groups; ^b Heteropoly acid and amine-grafted SBA-15; ^c Solvothermal synthesis of MIL-101 and subsequent three-step post-synthetic modification of MIL-101; ^d Bifunctional m esoporous MCM-41 containing amine and sulfonic acid groups synthesized through co-conde nsation using amino-protected reagent; ^e Bifunctional mesoporous MCM-41 containing amin e and sulfonic acid groups synthesized by the modification of SO₃H-MCM-41 surfaces with o rganic amine group.

Scheme S1. Postulated tandem reaction pathways on the MIL-101-NH₂-SO₃H; (a) acid catalysis by a metal node or a sulfonic acid group at a linker, (b) base catalysis by an amine group at another linker.