# **Electronic Supplementary Information (ESI)**

# One-pot synthesis of 5*H*-1,3,4-thiadiazolo[3,2-*a*]pyrimidin-5-one derivatives

Hong-Ru Dong, a Zhong-Lian Gao, a Rong-Shan Li, a Yi-Ming Hu, b Heng-Shan Dong, a\* and Zhi-Xiang Xie a\*

<sup>a</sup>State Key Laboratory of Applied Organic Chemistry, Institute of Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China <sup>b</sup>The School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, P, R China (Email: donghengshan@lzu.edu.cn; xiezx@lzu.edu.cn)

# Context

| General information                                 | S2        |
|-----------------------------------------------------|-----------|
| General procedure for the reactions of 3a-o         | S2~S3     |
| Spectroscopic data for following adducts 3a-o       | S3~S8     |
| X-ray structure determination <b>3d</b> , <b>3i</b> | \$8~\$13  |
| General procedure for the reactions 4a-c            |           |
| Spectroscopic data for following adducts 4a-c       | \$13~\$14 |
| Copies of <sup>1</sup> H NMR/ <sup>13</sup> C NMR   | \$15~\$48 |

### Experimental

## **General Information.**

All reactions under standard conditions were monitored by thin-layer chromatography (TLC) on gel  $F_{254}$  plates. The silica gel (200–300 meshes) for column chromatography was from the Qingdao Marine Chemical Factory in China. Unless otherwise stated, commercially obtained materials were used without further purification. Formic acid was Tianjin Guangfu Fine Chemical Research Institute, purified by refluxing with phthalic anhydride for 6 hs. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub> solution on a Bruker AV400-MHz FT NMR instruments, and spectral data are reported in *ppm* relative to tetramethylsilane (TMS) as internal standard. MS were measured on a HP-5988 spectrometer by direct inlet at 70 eV, and signals were given in *m/z* with relative intensity (%) in brackets, high resolution mass spectrometry were measured with MICRO-TOF Q II (ESI).

#### General procedure for the reactions

Typical preparation procedure for compounds 2-amino-5-substituted-[1,3,4]thiadiazoles 2a-o were synthesized by the method reported in previous communications.

The mixture of aryl carboxylic acid 1a-o (5 mmol) and phosphorus oxychloride (7 mL) was heated at 75-80 °C for 4 h, and then allowed to cool to room temperature. Water (10 mL) was added dropwise to the solution and the reaction mixture was heated at 105-110 °C for 10 h. After the reaction was completed, the mixture was basified to pH 8 with 10% potassium hydroxide, and the precipitated solid was collected by filtered, washed with water and finally crystallized from ethanol to give **2a-o**.

**R= 2a** 2-ethoxyphenyl<sup>1</sup>; **2b** 4-methylphenyl<sup>2</sup>; **2c** 3-methoxyphenyl<sup>3</sup>; **2d** 4-methoxyphenyl<sup>2</sup>; **2e** phenyl<sup>2</sup>; **2f** 4chlorophenyl<sup>2</sup>; **2g** 4-bromophenyl<sup>3</sup>; **2h** furan-2-yl<sup>4</sup>; **2i** 2-chlorophenyl<sup>2</sup>; **2j** 3-methylphenyl<sup>1</sup>; **2k** 2-bromophenyl<sup>1</sup>; **2l** 2-fluorophenyl<sup>5</sup>; **2m** benzyl<sup>5</sup>; **2n** 2-methoxyphenyl<sup>2</sup>; **2o** 2-methylphenyl<sup>2</sup>.

2a 50616-29-0 2b 26907-54-0 2c 247109-15-5 2d 1014-25-1 2e 2002-03-1 2f 28004-62-8 2g 13178-12-6 2h 447-45-4 2i 828-81-9 2j 76074-47-0 2k 108656-64-0 2l 59565-51-4 2m 16502-08-2 2n 28004-56-0 2o 59565-54-7

- (a) A. Santagati, M. Santagati, F. Russo, G. Ronsisvalle, J. Heterocyclic Chem. 1988, 25, 949-953; (b) P. Mullick, S. A. Khan, S. Verma, O. Alam, Bull. Korean Chem. Soc. 2010, 31(8), 2345-2350; (c) Y. Yu, Asian J. Chem., 2007, 19(4), 3141-3144.
- 2. D. R. Guda, H. M. Cho, M. E. Lee, RSC Adv., 2013, 3, 6813-6816.
- 3. S. G. Alegaon, K. R. Alagawadi, Med. Chem. Res., 2012, 21, 816-824.
- (a) S. Ferrari, F. Morandi, D. Motiejunas, E. Nerini, S. Henrich, R. Luciani, A. Venturelli, S. Lazzari, S. Calò, S. Gupta, V. Hannaert, P. A. M. Michels, R. C. Wade, M. P. Costi, *J. Med. Chem.* 2011, 54, 211–221; (b) T. Sakamoto, M. Moriya, H. Tsuge, T. Takahashi, Y. Haga, K. Nonoshita, O. Okamoto, H. Takahashi, A. Sakuraba, T. Hirohashi, T. Shibata, T. Kanno, J. Ito, H. Iwaasa, A. Gomori, A. Ishihara, T. Fukuroda, A. Kanatani, T. Fukami, *Bioorg. Med. Chem.* 2009, 17, 5015-5026; (c) D. C. Pryde, G. N. Maw, S. Planken, M. Y. Platts, V. Sanderson, M. Corless, A. Stobie, C. G. Barber, R. Russell, L. Foster, L. Barker, C. Wayman, P. Van Der Graaf, P. Stacey, D. Morren, C. Kohl, K. Beaumont, S. Coggon, M. Tute, *J. Med. Chem.* 2006, 49, 4409-4424.
- 5. X.-H. Liu, Y.-X. Shi, Y. Ma, C.-Y. Zhang, W.-L. Dong, L. Pan, B.-L. Wang, B.-J. Li, Z.-M. Li, *Eur. J. Med. Chem.* **2009**, *44*, 2782–2786.

# Typical synthesis procedure of 2-substituted-5*H*-[1,3,4]thiadiazolo[3,2-*a*]pyrimidin-5-one derivatives (3a-o)

A mixture of **2a-o** (1.0 mmol) with ethyl cyanoacetate (1.0 mL), phosphorus pentoxide (20 mmol) and formic acid (10.0 mL) was heated at 100-105° C for 12 h. The cooled reaction mixture was treated with ice-water and neutralized with 10% potassium hydroxide. Then the mixture liquid was extracted with CHCl<sub>3</sub> (3×15mL), dried with Na<sub>2</sub>SO<sub>4</sub> and the residue was purified by silica gel chromatography using CHCl<sub>3</sub>-ethyl acetate (4/1, v/v) to afford **3a-o**.

#### 2-(2-Ethoxyphenyl)-5H-1,3,4-thiadiazolo[3,2-a]pyridin-5-one (3a)



Yield(90%), white solid, m.p.: 191-193 °C; IR (KBr): 3372, 2980, 1698, 1598, 1492, 1460, 1397, 1298, 1124, 1035, 834, 785, 762, 609; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  8.49-8.46 (m, 1H, Ar-H), 7.98-7.97 (d, 1H, *J* = 6.8Hz, 6-CH), 7.54-7.49 (m, 1H, Ar-H), 7.12-7.02 (m, 2H, Ar-H), 6.47-6.45 (d, 1H, *J* = 6.8Hz, 7-CH), 4.32-4.26 (q, 2H, *J* = 20.8Hz, OCH<sub>2</sub>), 1.62-1.59 (t, 3H, *J* = 14Hz, CH<sub>2</sub>CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 163.2, 157.2, 156.6, 154.7, 152.3, 134.0, 128.7, 121.2, 117.0, 112.1, 108.9, 65.4, 14.6; MS(%): m/z 273(M<sup>+</sup>, 39.5), 258(24.2), 245(23.8), 229(2.5), 217(4.3), 146(47.6), 121(24.3), 112(48.2), 98(100), 80(43.2), 69(44.0), 52(60.1). **HRMS** (ESI) calcd for C<sub>13</sub>H<sub>11</sub>N<sub>3</sub>O<sub>2</sub>S [M+H]<sup>+</sup>274.0645, found 274.0648.

#### 2-(4-Methylphenyl)-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3b)



Yield(75%), white solid, m.p.: 213-215 °C; IR (KBr): 3400, 2913, 1789, 1670, 1596, 1550, 1469, 1383, 1255, 1219, 1148, 1103, 1039, 938, 804, 737, 678; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.95-7.93 (d, 1H, *J* = 6.4Hz, 6-CH), 7.86-7.84 (d, 2H, *J* = 8.4Hz, Ar-H), 7.34-7.28 (t, 2H, *J* = 8.4Hz, Ar-H), 6.49-6.48 (d, 1H, *J* = 6.4Hz, 7-CH), <sup>13</sup>C NMR (CDCl<sub>3</sub>): 162.1, 159.2, 157.1, 152.1, 143.9, 130.0, 127.6, 125.5, 109.9, 21.6; MS(%): m/z 243(M<sup>+</sup>, 60.0), 215(4.7), 135(39.2), 126(19.4), 119(33.9), 112(22.0), 98(100), 91(30.2), 80(19.8), 52(41.8), 39(25.9). **HRMS** (ESI) calcd for C<sub>12</sub>H<sub>9</sub>N<sub>3</sub>OS [M+H]<sup>+</sup>244.0539, found 244.0545.

2-(3-Methoxyphenyl)-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3c)

OCH<sub>3</sub>

Yield(78.5%), yellow solid, m.p.: 135-137 °C; IR (KBr): 3509, 3066, 2939, 1708, 1495, 1287, 1236, 1169, 1045, 790, 686; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.96-7.94 (d, 1H, *J* = 6.4Hz, 6-CH), 7.53-7.53 (d, 1H, Ar-H), 7.47-7.40 (m, 2H, Ar-H), 7.15-7.12 (m, 1H, Ar-H), 6.50-6.49 (d, 1H, *J* = 6.4Hz, 7-CH), 3. 90 (s, 3H, OCH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 162.1, 160.2, 159.1, 157.1, 152.2, 130.4, 129.4, 120.4, 119.4, 112.0, 110.0, 55.7; MS(%): m/z 259(M<sup>+</sup>, 100), 231(2.2), 204(3.7), 188(2.6), 151(19.3), 133(25.9), 126(22.3), 108(59.2), 98(39.3), 69(31.9), 52(71.4), 39(35). **HRMS** (ESI) calcd for C<sub>12</sub>H<sub>9</sub>N<sub>3</sub>O<sub>2</sub>S [M+H]<sup>+</sup>260.0488, found 260.0495.

2-(4-Methoxyphenyl)-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3d)



Yield(93%), white solid, m.p.: 189-191 °C; IR (KBr): 3522, 3027, 2928, 2842, 1704, 1602, 1487, 1261, 1173, 1014, 828, 723, 682, 601; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.93-7.92 (d, 1H, *J* = 6.4Hz, 6-CH), 7.91-7.88 (t, 2H, *J* = 8.8Hz, Ar-H), 7.02-6.99 (t, 2H, *J* = 7.6Hz, Ar-H), 6.48-6.46 (d, 1H, *J* = 6.4Hz, 7-CH); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 163.3, 162.0, 158.7, 157.1, 152.0, 129.4, 120.6, 114.7, 109.8, 55.5; MS(%): m/z 259(M<sup>+</sup>, 100), 231(3.3), 216(1.6), 204(1.4), 188(5.3), 151(36.2), 135(45.8), 126(16.8), 108(44.2), 98(99.2), 80(23.3), 52(53.5). **HRMS** (ESI) calcd for C<sub>12</sub>H<sub>9</sub>N<sub>3</sub>O<sub>2</sub>S [M+H]<sup>+</sup>260.0488, found 260.0491.

2-Phenyl-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3e)



Yield(30%): white solid, m.p.: 165-167 °C; IR (KBr): 3382, 3048, 2923, 1706, 1490, 1269, 1231, 1180, 829, 762, 688, 607; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.98-7.96 (d, 1H, *J* = 7.2Hz, 6-CH), 7.96-7.94 (d, 2H, *J* = 6.4Hz, Ar-H), 7.63-7.52 (m, 3H, Ar-H), 6.51-6.48 (d, 1H, *J* = 6.4Hz, 7-CH); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 162.1, 159.1, 157.1, 152.2, 133.0, 128.4, 128.2, 127.7, 110.0; MS(%): m/z 229(M<sup>+</sup>, 76.7), 201(6.4), 174(3.8), 126(17.6), 121(48.7), 112(22.9), 98(100), 77(67.0), 71(27.7), 52(51.1), 51(51.2), 39(30.2). **HRMS** (ESI) calcd for C<sub>11</sub>H<sub>7</sub>N<sub>3</sub>OS [M+H]<sup>+</sup>230.0383, found 230.0380.

2-(4-Chlorophenyl)-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3f)



Yield(48%), white solid, m.p.: 176-178 °C; IR (KBr): 3059, 2921, 1986, 1707, 1494, 1272, 1184, 1066, 1040, 829, 757, 734, 607; <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 8.31-8.29 (t, 1H, Ar-H), 8.00-7.99 (d, 1H, *J* = 6.4Hz, 6-CH), 7.57-7.23 (m, 3H,

Ar-H), 6.51-6.49 (d, 1H, J = 6.8Hz, 7-CH); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 162.5, 156.9, 156.3, 152.5, 133.3, 133.0, 131.3, 130.8, 127.6, 109.5; MS(%): m/z 263(M<sup>+</sup>, 30.2), 235(3.8), 155(28.4), 139(15.9), 126(18.2), 112(26.0), 98(100), 71(27.5), 52(37.0). **HRMS** (ESI) calcd for C<sub>11</sub>H<sub>6</sub>ClN<sub>3</sub>OS [M+H]<sup>+</sup>263.9993, found 263.9998.

2-(4-Bromophenyl)-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3g)



Yield(45%), white solid, m.p.: 214-216 °C; IR (KBr): 3549, 3023, 1708, 1684, 1559, 1496, 1395, 1272, 1003, 822, 704, 662; <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 7.97-7.94 (m, 1H, 6-CH), 7.86-7.82 (m, 2H, Ar-H), 7.71-7.66 (m, 2H, Ar-H), 6.52-6.48 (m, 1H, 7-CH); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 161.9, 158.1, 157.0, 152.3, 132.8, 129.0, 127.9, 127.2, 110.2; MS(%): m/z 307(M<sup>+</sup>, 19.8), 279(0.9), 201(17.1), 126(15.6), 120(46.5), 112(26.7), 102(15.6), 98(100), 80(27.3), 75(23.5), 52(61.4). **HRMS** (ESI) calcd for C<sub>11</sub>H<sub>6</sub>BrN<sub>3</sub>OS [M+H]<sup>+</sup>307.9488, found 307.9485.

#### 2-(Furan-2-yl)-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3h)



Yield(52.5%), white solid, m.p.: 218-220 °C; IR (KBr): 3094, 2922, 1675, 1591, 1555, 1470, 1266, 1145, 1034, 886, 809, 754, 672; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.96-7.94 (d, 1H, *J* = 6.4Hz, 6-CH), 7.69 (t, 1H, *J* = 0.8Hz, furan-H), 7.43 (d, 1H, *J* = 3.6Hz, furan-H), 6.69-6.67 (q, 1H, *J* = 5.2Hz, furan-H), 6.50-6.49 (d, 1H, *J* = 6.4Hz, 7-CH); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 161.5, 157.1, 152.1, 149.5, 146.7, 143.6, 114.4, 113.3, 109.9; MS(%): m/z 219(M<sup>+</sup>, 77.1), 191(5.1), 111(48.5), 98(83.1), 84(14.4), 71(17.9), 57(19.2), 52(43.8), 39(100). **HRMS** (ESI) calcd for C<sub>9</sub>H<sub>5</sub>N<sub>3</sub>O<sub>2</sub>S [M+H]<sup>+</sup>220.0175, found 220.0180.

2-(2-Chlorophenyl)-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3i)



Yield(69.5%), white solid, m.p.: 169-171 °C; IR (KBr): 3381, 3060, 2922, 1710, 1560, 1497, 1273, 1186, 1068, 1042, 832, 757, 734, 606; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  8.32-8.29 (m, 1H, Ar-H), 8.01-7.99 (d, 1H, *J* = 6.8Hz, 6-CH), 7.58-7.44 (m, 3H, Ar-H), 6.52-6.49 (m, 1H, *J* = 6.4Hz, 7-CH); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 162.6, 157.0, 156.1, 152.6, 133.3, 133.1, 131.4, 130.9, 127.7, 127.1, 109.6; MS(%): m/z 263(M<sup>+</sup>, 21.5), 235(2.5), 208(0.8), 155(23.9), 139(11.7), 112(21.4), 98(100), 75(18.8), 52(21.7). **HRMS** (ESI) calcd for C<sub>11</sub>H<sub>6</sub>ClN<sub>3</sub>OS [M+H]<sup>+</sup>263.9993, found 263.9995.

2-(3-Methylphenyl)-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3j)



Yield(82%), white solid, m.p.: 150-152 °C; IR (KBr): 3390, 3062, 2923, 1697, 1493, 1274, 1232, 1172, 1050, 831, 789, 687, 568; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$ 7.93-7.91 (q, 1H, *J* = 9.2Hz, 6-CH), 7.81 (s, 1H, Ar-H), 7.68-7.67 (d, 1H, *J* = 3.2Hz, Ar-H), 7.38-7.37 (d, 2H, *J* = 4.4Hz, Ar-H), 5.48-5.45 (q, 1H, *J* = 8.8Hz, 7-CH); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 162.1, 159.3, 157.1, 152.1, 138.5, 133.8, 129.2, 128.1, 128.0, 125.0, 110.0, 21.1; MS(%): m/z 243(M<sup>+</sup>, 44.6), 215(6.1), 135(37.5), 126(19.4), 119(22.5), 112(21.7), 98(100), 91(26.1), 71(22.1), 65(24.5), 52(42.0), 39(34.3). **HRMS** (ESI) calcd for C<sub>12</sub>H<sub>9</sub>N<sub>3</sub>OS [M+H]<sup>+</sup>244.0539, found 244.0543.

#### 2-(2-Bromophenyl)-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3k)



Yield(56%), white solid, m.p.: 179-181 °C; IR (KBr): 3372, 3061, 2922, 1709, 1563, 1495, 1271, 1189, 1064, 1029, 837, 759, 707, 572; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  8.15-8.13 (q, 1H, Ar-H), 8.01-7.99 (d, 1H, *J* = 6.8Hz, 6-CH), 7.76-7.74 (t, 1H, Ar-H), 7.52-7.43 (m, 2H, Ar-H), 6.52-6.50 (d, 1H, *J* = 6.8Hz, 7-CH); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 162.6, 157.7, 157.0, 152.6, 134.3, 133.3, 132.1, 129.2, 128.1, 122.3, 109.7; MS(%): m/z 307(M<sup>+</sup>, 25.5), 279(2.5), 201(12.8), 126(15.3), 120(29.2), 112(19.0), 98(100), 80(22.4), 75(25.2), 52(67.1), 40(28.6). **HRMS** (ESI) calcd for C<sub>11</sub>H<sub>6</sub>BrN<sub>3</sub>OS [M+H]<sup>+</sup>307.9488, found 307.9494.

#### 2-(2-Fluorophenyl)-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3l)



Yield(62%), white solid, m.p.: 178-180 °C; IR (KBr): 3699, 3380, 3053, 2921, 1588, 1406, 1096, 1032, 822, 757, 676; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  8.41-8.37 (m, 1H, Ar-H), 7.99-7.98 (d, 1H, *J* = 6.4Hz, 6-CH), 7.64-7.58 (m, 1H, Ar-H), 7.38-7.26 (m, 2H, Ar-H), 6.50-6.49 (d, 1H, *J* = 6.4Hz, 7-CH); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 162.3, 159.2, 156.9, 152.4, 134.6, 134.49, 128.9, 125.1, 125.1, 116.4, 109.5; MS(%): m/z 247(M<sup>+</sup>, 38.5), 219(5.2), 139(62.6), 126(14.7), 112(27.2), 98(100), 95(30.5), 80(21.0), 71(32.1), 57(22.4), 52(45.4). **HRMS** (ESI) calcd for C<sub>11</sub>H<sub>6</sub>FN<sub>3</sub>OS [M+H]<sup>+</sup>248.0288, found 248.0285.

## 2-Benzyl-5*H*-1,3,4-thiadiazolo[3,2-*a*]pyrimidin-5-one (3m)



Yield(67%), white solid , m.p.: 119-121 °C; IR (KBr): 3494, 3063, 3029, 2924, 2234, 1697, 1549, 1495, 1293, 1238, 1123, 821, 708, 666; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.92-7.88 (m, 1H, *J* = 6.4Hz, 6-CH), 7.40-7.33 (m, 5H, Ar-H), 6.47-6.43 (m, 1H, *J* = 6.4Hz, 7-CH), 4.37-4.35 (t, 2H, *J* = 6.4Hz, Ph-CH<sub>2</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 162.8, 162.6, 157.1, 152.3, 134.3, 129.4, 128.9, 128.3, 109.8, 37.8; MS(%): m/z 243(M<sup>+</sup>, 48.7), 215(6.4), 149(25.6), 112(19.6), 98(79.6), 91(100), 80(21.7), 71(40.5), 65(38.6), 52(51.2), 39(49.5). **HRMS** (ESI) calcd for C<sub>12</sub>H<sub>9</sub>N<sub>3</sub>OS [M+H]<sup>+</sup>244.0539, found 244.0540.

2-(2-Methoxyphenyl)-5H-1,3,4-thiadiazolo[3,2-a]pyrimidin-5-one (3n)



Yield(85%), white solid, m.p.: 225-227 °C; IR (KBr): 3404, 2991, 2993, 1784, 1674, 1446, 1290, 1227, 1160, 1113, 991, 822, 759, 686; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  8.47-8.44 (q, 1H, Ar-H), 7.98-7.97 (d, 1H, *J* = 6.4Hz, 6-CH), 7.56-7.52 (m, 1H, Ar-H), 7.14-7.05 (m, 2H, Ar-H), 6.47-6.45 (d, 1H, *J* = 6.8Hz, 7-CH), 4.05(s, 3H, OCH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 163.1, 157.2, 157.1, 154.7, 152.4, 134.1, 128.7, 121.4, 117.0, 111.5, 109.0, 55.9; MS(%): m/z 259(M<sup>+</sup>, 49.6), 151(11.6), 141(19.9), 132(20.9), 108(57.5), 84(27.2), 77(33.7), 69(33.6), 52(100), 39(30.1). **HRMS** (ESI) calcd for C<sub>12</sub>H<sub>9</sub>N<sub>3</sub>O<sub>2</sub>S [M+H]<sup>+</sup>260.0488, found 260.0494.

# 2-(2-Methylphenyl)-5*H*-1,3,4-thiadiazolo[3,2-*a*]pyrimidin-5-one (30)



Yield(76%), white solid, m.p.: 157-159 °C; IR (KBr): 3368, 3059, 2965, 1694, 1497, 1469, 1289, 1231, 1182, 834, 771, 711; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  7.96-7.92 (m, 1H, *J* = 6.4Hz, 6-CH), 7.63-7.61 (t, 1H, Ar-H), 7.47-7.42 (m, 1H, Ar-H), 7.35-7.26 (m, 2H, Ar-H), 6.49-6.45 (m, 1H, *J*=6.4Hz, 7-CH); <sup>13</sup>C NMR (CDCl<sub>3</sub>): 162.4, 158.1, 157.0, 152.2, 137.9, 132.0, 131.9, 130.4, 127.3, 126.5, 109.9, 21.4; MS(%): m/z 243(M<sup>+</sup>, 72.5), 215(4.3), 184(17.1), 149(39.8), 134(32.8), 116(55.9), 95(100), 89(35.3), 80(20.8), 63(25.1), 52(55.9), 39(49.4). **HRMS** (ESI) calcd for C<sub>12</sub>H<sub>9</sub>N<sub>3</sub>OS [M+H]<sup>+</sup>244.0539, found 244.0546.



Figure 1 A Mercury (1.4, CCDC, 2005) view of the molecular structure of 3d

X-ray structure determination of **3d.** Colorless Block,  $C_{12}H_9N_3O_2S$ , Mr=259.28, Monoclinic, space group C2/c,  $a=\underline{14.1942}$  (13),  $b=\underline{13.4679}$  (13),  $c=\underline{12.8940}$  (12) Å,  $\alpha=90.00$ ,  $\beta=\underline{112.384(7)}$ ,  $\gamma=90.00^\circ$ ,  $V=\underline{2279.2(4)}$  Å<sup>3,</sup> Z=8,  $D_x=\underline{1.511}$  Mg m<sup>-3</sup>,  $F_{000}=\underline{1072}$ ,  $\mu=0.28$  mm<sup>-1</sup>. Intensity data were collected using a Siemens SMART diffractometer at 296(2) K, graphite monochromator MoKa radiation ( $\lambda=0.71073$  Å), using the  $\varphi-\omega$  scan technique to a maximum 2.2-25.5°. A total of 5973 reflections were collected with 2116 unique ones(R = 0.0422), of which 1458 reflections with  $I > 2\sigma(I)$ . The final int R and wR values were 0.0336 and 0.1009, s=1.026, ( $\Delta/\sigma$ )<sub>max</sub> = 0.000. The maximum peak and minimum peak in the final difference map is 0.21 and -0.22 e Å<sup>-3</sup>.











Figure 2. The  $\pi$ - $\pi$  accumulation structure of 3d supramolecular self-assembly.



Figure 3 A Mercury (1.4, CCDC, 2005) view of the molecular structure of 3i

X-ray structure determination of **3i**. Colorless Block, C<sub>11</sub>H<sub>6</sub>ClN<sub>3</sub>OS, *Mr*=263.70, Monoclinic, space group P2(1)/n, *a*=10.838 (4), *b*=4.9244 (19), *c*=20.011 (7) Å, *α*=90.00, β=98.505(6), γ=90.00°, *V*= 1056.3(7) Å<sup>3</sup>, *Z*=4,  $D_x$ =1.658 Mg m<sup>-3</sup>,  $F_{000}$ =536, µ=0.54 mm<sup>-1</sup>. Intensity data were collected using a Siemens SMART diffractometer at 296(2) K, graphite monochromator MoKa radiation ( $\lambda$ =0.71073 Å), using the  $\varphi$ - $\omega$  scan technique to a maximun 2.1-26.0°. A total of 5348 reflections were collected with 2061 unique ones(R = 0.0330), of which 1745 reflections with  $I > 2\sigma(I)$ . The final int *R* and *wR* values were 0.0237 and 0.0902, *s*=1.027, ( $\Delta/\sigma$ )<sub>max</sub> = 0.000. The maximum peak and minimum peak in the final difference map is 0.22 and -0.29 e Å<sup>-3</sup>.





**Figure 4**. The  $\pi$ - $\pi$  accumulation structure of **3i** supramolecular self-assembly.

#### Typical synthesis procedure of substituted-4*H*-pyrido[1,2-*a*]pyrimidin-4-one derivatives (4a-c)

A mixture of (un)substituted-2-aminopyridine (1.0 mmol) with ethyl cyanoacetate (1.0 mL), phosphorus pentoxide (20 mmol) and formic acid (10.0 mL) was heated at 100-105° C for 12 h. The cooled reaction mixture was treated with ice-water and neutralized with 10% potassium hydroxide. Then the mixture liquid was extracted with  $CHCl_3$  (3×15mL), dried with  $Na_2SO_4$  and the residue was purified by silica gel chromatography using  $CHCl_3$ -ethyl acetate (4/1, v/v) to afford **4a-c**.

# 4H-Pyrido[1,2-a]pyrimidin-4-one (4a)



Yield(20%), white needle solid, m.p.: 127-128 °C (Lit. 127 °C <sup>1</sup>); <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  9.10-9.09 (d, 1H, *J* = 7.2 Hz), 8.31-8.30 (d, 1H, *J* = 6.4 Hz), 7.79-7.75 (m, 1H), 7.69-7.67 (d, 1H, *J* = 8.0 Hz), 7.21-7.17 (m, 1H), 6.47-6.46 (d, 1H, *J* = 6.4 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  158.0, 154.9, 152.0, 136.3, 127.5, 126.7, 115.8, 105.0.

#### 7-Methyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (4b)



Yield(37.5%), white needle solid, m.p.: 97-98 °C (Lit. 98-99 °C); <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  8.90 (s, 1H), 8.28-8.27 (d, 1H, *J* = 6.4 Hz), 7.62 (s, 2H), 6.44-6.43 (d, 1H, *J* = 6.4 Hz), 2.45 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  157.9, 154.5, 150.9, 139.3, 126.1, 125.0, 109.4, 104.6, 18.5.

7-Chloro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (4c)<sup>4</sup>



Yield(33%), white needle solid, m.p.: 121-122 °C; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  9.11 (d, 1H, J = 6.0 Hz), 8.31-8.30 (d, 1H, J = 6.0 Hz), 7.71-7.68 (m, 1H), 7.65-7.61 (m, 1H), 6.50-6.49 (d, 1H, J = 6.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>): <sup>13</sup>C NMR (CDCl<sub>3</sub>): <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  157.0, 154.8, 150.4, 137.6, 127.8, 125.4, 124.5, 105.6.

#### Synthesis procedure of 2-chloro-4H-pyrido[1,2-a]pyrimidin-4-one



A mixture of 2-aminopyridine (1.0 mmol) with ethyl cyanoacetate (1.0 mL), phosphorus oxychloride (20 mmol) and formic acid (10.0 mL) was heated at 100-105° C for 12 h. The cooled reaction mixture was treated with ice-water and neutralized with 10% potassium hydroxide. Then the mixture liquid was extracted with CHCl<sub>3</sub> ( $3\times15$ mL), dried with Na<sub>2</sub>SO<sub>4</sub> and the residue was purified by silica gel chromatography using CHCl<sub>3</sub>-ethyl acetate (4/1, v/v) to afford **4d**.

#### 2-Chloro-4H-pyrido[1,2-a]pyrimidin-4-one (4d)



Yield(42.5%), white needle solid, m.p.: 157-158 °C (Lit. 159 °C) <sup>5</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  9.08-9.06 (d, 1H, J = 6.8 Hz), 7.92-7.87 (m, 1H), 7.70-7.87 (d, 1H, J = 6.8 Hz), 7.28-7.26 (d, 1H, J = 6.8 Hz), 6.50 (s, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  158.7, 157.3, 150.6, 138.4, 127.9, 126.0, 116.6, 102.7.

- 1. R. Adams, I. J. Pachter, J. Am. Chem. Soc., 1952, 74 (21), 5491–5497.
- 2. N. Katagiri, R. Niwa, T. Kato, Heterocycles, 1983, 20(4), 597-600.
- 3. K. A. Suri, O. P. Suri, M. Amina, B. P. Wakhloo, N. K. Satti, Mag. Res. Chem., 2003, 41 (9), 747-749.
- 4. A. Molnar, F. Faigl, B. Podanyi, Z. Finta, L. Balazs, I. Hermecz, Heterocycles, 2009, 78(10), 2477-2488.
- 5. V. Oakes, H. N. Rydon, J. Chem. Soc., 1958, 209-11.





















O



| Be Show and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 28'98<br>00'LL<br>01'LL<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21'13<br>21 | <b></b> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 96' 90T ——-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 18' '82 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 90'2ST<br>ST'8ST<br>80'29T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |









800'0-200'0-800'0

1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)<









000'0-----



| 0.07         |     |               |
|--------------|-----|---------------|
| 284          | . 9 | 1             |
| 202          | ' 9 | 1-            |
| ₽69          | ' 9 | ~             |
| 845          | • 9 | ->            |
| 883          | • 9 | -1            |
| 683          | ' 9 | 1             |
| 282          | ٠.  | ~             |
| SZĐ          | 14  |               |
| \$3 <b>4</b> | .6  | -             |
| 585          | 14  | ~             |
| 685          | 14  | $\rightarrow$ |
| T69          | 14  | -             |
| T₽S          | 16  | -7            |
| 156          | 14  | -             |
|              |     |               |





















000'0-----





o z s





































