Facile hydrothermal synthesis of a highly efficient solar active Pr_6O_{11} -ZnO

Photocatalyst and its multiple applications

Subramanian Balachandran, Kuppulingam Thirumalai and Meenakshisundaram Swaminathan*

Department of Chemistry, Annamalai University, Annamalainagar 608 002, India.

Acid Violet 7($C_{20}H_{16}N_4Na_2O_9S_2$)

Fig. S1 Azo dye structure

Fig. S2 XRD pattern (a) $3wt\% Pr_6O_{11}$ -ZnO, (b) $6wt\% Pr_6O_{11}$ -ZnO, (c) $9wt\% Pr_6O_{11}$ -ZnO and (d) $12wt\% Pr_6O_{11}$ -ZnO

Fig. S3 EDS spectra of Pr₆O₁₁-ZnO

Fig. S4 Kubelka-Munk function (a) Prepared ZnO, (b) Pr₆O₁₁ and (c) Pr₆O₁₁-ZnO

Fig. S5 UV spectral changes of AV 7 at different irradiation times with Pr_6O_{11} -ZnO

Fig. S6 Effect of solution pH on AV 7 degradation: AV 7 dye concentration = 5×10^{-4} M, catalyst suspended= 4 g L⁻¹, airflow rate = 8.1 mL s⁻¹, Irradiation time = 75 min, I_{solar} = $1250 \times 100 \pm 100$ lux.

Fig. S7 Effect of catalyst loading on AV 7 degradation: AV 7 dye concentration = 5×10^{-4} M, airflow rate = 8.1 mL s⁻¹, pH = 7, Irradiation time = 75 min, $I_{solar} = 1250 \times 100 \pm 100$ lux.

Fig. S8 XRD pattern of (a) Fresh catalyst and (b) After 4th cycle reusable catalyst.