Supporting Information

for

A New Fluorescent Probe based on Styrylcyanine Dye Containing Pyridine: Dissimilar Fluorescent Response to Cu²⁺ and Pb²⁺

Xiaodong Yang,^b Weifeng Zeng,^b Lei Wang,^b Xinwei Lu,^a Yichen Yan,^a Jinqing Qu, *,^b

Ruiyuan Liu*,a

a School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P.R. China. Fax: 86-020-61648196; Tel: 86-020-61648196; E-mail: ruiyliu@smu.edu.cn

b School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R.China. E-mail: cejqqu@scut.edu.cn

Contents

Figure S1. ¹H NMR spectrum of 1 in DMSO- d_{6} .

Figure S2. ¹³C NMR spectrum of 1 in DMSO- d_6 .

Figure S3. IR spectrum of 1

Figure S4. ESI-MS spectrum of **1**

Figure S5. Partial ¹H NMR spectra of **1** upon addition of Pb^{2+} in DMSO- $d_{6-}(a)$

 $[Pb^{2+}]/[1] = 0$, (b) $[Pb^{2+}]/[1] = 0.5$, $[Pb^{2+}]/[1] = 1$.

Figure S6. Absorption spectra of **1** (30 μ M) after addition of various metal ions (Cu²⁺,Pb²⁺, Ca²⁺, Hg²⁺, K⁺, Fe²⁺, Co²⁺, Ag⁺, Mg²⁺, Mn²⁺, Na⁺) in CH₃CN/water mixture (9:1, v/v) ([metal ion] = 150 μ M).

Figure S7. Fluorescent spectra of **1** (30 μ M) containing Cu²⁺ upon addition of various competing metal ions (Pb²⁺, Ca²⁺, Hg²⁺, K⁺, Fe²⁺, Co²⁺, Ag⁺, Mg²⁺, Mn²⁺, Na⁺) in CH₃CN/water mixture (9:1, v/v) ([**1**] = 30 μ M, [Cu²⁺] = [other metal ion] = 150 μ M).

Figure S8. Fluorescence intensities of (a) **1** (30 μ M) in CH₃CN/water mixture (9:1, v/v) with 150 μ M Cu²⁺ in the presence of competing metal ions. Black bars; **1** (30 μ M) in CH₃CN/water mixture (9:1, v/v) with 150 μ M of stated metal ions. Slant bars; **1** (30 μ M) in CH₃CN/water mixture (9:1, v/v) with 150 μ M Cu²⁺ + 150 μ M of stated metal ions.

Figure S3. IR spectrum of 1

Figure S4. ESI-MS spectrum of 1

Figure S5. Partial ¹H NMR spectra of **1** upon addition of Pb²⁺ in DMSO- d_6 .(a) [Pb²⁺]/[**1**] = 0, (b) [Pb²⁺]/[**1**] = 0.5, [Pb²⁺]/[**1**] = 1.

Figure S6. Absorption spectra of 1 (30 μ M) after addition of various metal ions (Cu²⁺,Pb²⁺, Ca²⁺, Hg²⁺, K⁺, Fe²⁺, Co²⁺, Ag⁺, Mg²⁺, Mn²⁺, Na⁺, Pd²⁺, Cd²⁺, Ni²⁺, Zn²⁺) in CH₃CN/water mixture (9:1, v/v) ([metal ion] = 150 μ M).

Figure S7. Fluorescent spectra of **1** (30 μ M) containing Cu²⁺ upon addition of various competing metal ions (Pb²⁺, Ca²⁺, Hg²⁺, K⁺, Fe²⁺, Co²⁺, Ag⁺, Mg²⁺, Mn²⁺, Na⁺, Pd²⁺, Cd²⁺, Ni²⁺, Zn²⁺) in CH₃CN/water mixture (9:1, v/v) ([**1**] = 30 μ M, [Cu²⁺] = [other metal ion] = 150 μ M).

Figure S8. Fluorescence intensities of (a) **1** (30 μ M) in CH₃CN/water mixture (9:1, v/v) with 150 μ M Cu²⁺ in the presence of competing metal ions. Black bars; **1** (30 μ M) in CH₃CN/water mixture (9:1, v/v) with 150 μ M of stated metal ions. Slant bars; **1** (30 μ M) in CH₃CN/water mixture (9:1, v/v) with 150 μ M Cu²⁺ + 150 μ M of stated metal ions.