Supplementary data for publication on line

Coordination variability of Cu^I in multidonor heterocyclic thioamides : synthesis, crystal structures, luminescent properties and ESI-mass studies of complexes

Tarlok S. Lobana,*^a Amanpreet K. Sandhu,^a Razia Sultana,^a Alfonso Castineiras,^b Ray J. Butcher,^c and Jerry P. Jasinski.^d

^aDepartment of Chemistry, Guru Nanak Dev University, Amritsar – 143 005, India. Email: <u>tarlokslobana@yahoo.co.in</u>. Fax 91-183 -2258820.^b Departamento de Quimica Inorganica, Facultad de Farmacia, Universidad de Santiago, 15782-Santiago, Spain.^c Department of Chemistry, Howard University, Washington DC, 20059,USA.^d Department of Chemistry, Keene State College, Keene NH 03435-2001 USA.^{\u039}Electronic supplementary information (ESI) available: CCDC reference numbers 976978 (1), 976979 (2a), 976980 (2b), 976981 (3), 976982 (4), 976983 (5), 976984 (6) and 976985 (7). For ESI and crystallographic data in CIF or other electronic format see DOI: Description. This material is available free of charge via the Internet at <u>http://www.rsc.org</u>.

ESI-Mass data of complexes Complex. 1. Complete spectrum

m/z observed 587.1- isotopic pattern

m/z observed 761.0- isotopic pattern

m/z observed 935.0- isotopic pattern

m/z observed 1023.1- isotopic pattern

m/z observed 1197.1- isotopic pattern

Complex 2 : Complete spectrum

m/z observed 477.0- isotopic pattern

m/z observed 803.0- isotopic pattern

m/z observed 1065.1- isotopic pattern

Complex 3. Complete spectrum and m/z observed 587.1- isotopic pattern

Complex 5. Complete spectrum

Species identified with isotopic patterns in same graph below.

Complex 6. Complete spectrum

m/z observed 587.1- isotopic pattern

m/z observed 763.05- isotopic pattern

Complex 7. Complete spectrum

m/z observed 587.1- isotopic pattern

NMR data of complexes

Fig. 1a.S. ¹H spectrum of $[Cu(\kappa^1N, \kappa^1S\text{-pymS})(PPh_3)_2]$ (1)

Fig.ure 1b.S. Expanded ¹H spectrum of $[Cu(\kappa^1N, \kappa^1S-pymS)(PPh_3)_2]$ (1)

Fig.1c.S. ³¹P spectrum of [Cu(κ¹N, κ¹S-pymS)(PPh₃)₂] (1)

Fig.1d.S. Expanded ³¹P spectrum of [Cu(κ¹N, κ¹S-pymS)(PPh₃)₂] (1)

Fig.2a.S. ¹H spectrum of [Cu(κ¹N,κ¹S-purSH)(PPh₃)₂]·CH₃OH (2a)

Fig. 2b.S. Expanded ¹H spectrum of [Cu(k¹N,k¹S-purSH)(PPh₃)₂]·CH₃OH (2a)

Fig.2c.S. ³¹P spectrum of [Cu(κ¹N,κ¹S-purSH)(PPh₃)₂]·CH₃OH (2a)

Fig.2d.S. Expanded ³¹P spectrum of [Cu(k¹N,k¹S-purSH)(PPh₃)₂]·CH₃OH (2a)

Fig.3a.S. ¹H spectrum of [CuCl(κ¹S-tucH₂)(PPh₃)₂](3)

Fig.3b.S. Expanded ¹H spectrum of [CuCl(k¹S-tucH₂)(PPh₃)₂](3)

Fig.3c.S. ³¹P spectrum of [CuCl(κ¹S-tucH₂)(PPh₃)₂](3)

Fig.4a.S. ¹H spectrum of [Cu₂(κ²Cl)(κ¹S,κ¹S-dtucH)(PPh₃)₄] (4)

Fig.4b.S. Expanded ¹H spectrum of [Cu₂(κ²Cl)(κ¹S,κ¹S-dtucH)(PPh₃)₄] (4)

Fig.4c.S. ³¹P spectrum of $[Cu_2(\kappa^2 Cl)(\kappa^1 S, \kappa^1 S-dtucH)(PPh_3)_4]$ (4)

Fig.5a.S. ¹H spectrum of [Cu₂(κ^2 Br)(κ^1 S, κ^1 S-dtucH)(PPh₃)₄] (5)

Fig.5b.S. Expanded ¹H spectrum of [Cu₂(κ²Br)(κ¹S,κ¹S-dtucH)(PPh₃)₄] (5)

Fig.5c.S. ³¹P spectrum of $[Cu_2(\kappa^2 Br)(\kappa^1 S, \kappa^1 S-dtucH)(PPh_3)_4]$ (5)

Fig.6a.S. ¹H spectrum of [Cu(tmtH₂)(PPh₃)₂]·0.5H₂O (6)

Fig.6b.S. Expanded ¹H spectrum of [Cu(tmtH₂)(PPh₃)₂]·0.5H₂O (6)

Fig.6c.S. ³¹P spectrum of [Cu(tmtH₂)(PPh₃)₂]·0.5H₂O (6)

Fig.7a.S.¹H spectrum of [Cu₃Br₂(κ¹N,κ¹S,κ²S-tmtH₂)(PPh₃)₆](7)

Fig. 7b.S. Expanded ¹H spectrum of [Cu₃Br₂(κ¹N,κ¹S,κ²S-tmtH₂)(PPh₃)₆](7)

Fig. 7c.S. ³¹P spectrum of [Cu₃Br₂(κ¹N,κ¹S,κ²S-tmtH₂)(PPh₃)₆](7)

Figure 8. Fluorescence spectrum of DMSO ; λ_{ex} =276 nm