The chemical structures of imidazolium-based ILs

The chemical structures of the synthesized imidazolium-based ILs were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using a Bruker ARX400 spectrometer at room temperature with deuterated water $\left(\mathrm{D}_{2} \mathrm{O}\right)$ as the solvent. The detailed ${ }^{1} \mathrm{H}$ NMR spectra of the synthesized imidazoliumbased ILs shown in Figs. S1-S7 was in agreement with the designed structures.

Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{C}_{6} \mathrm{MIM}\right]\left[\mathrm{CH}_{3} \mathrm{COO}\right]$

Fig. S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{C}_{6} \mathrm{MIM}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}\right]$

Fig. S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{C}_{6} \mathrm{MIM}\right]\left[\mathrm{HSO}_{4}\right]$

Fig. S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{C}_{2} \mathrm{MIM}\right]\left[\mathrm{HSO}_{4}\right]$

Fig. S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{C}_{4} \mathrm{MIM}\right]\left[\mathrm{HSO}_{4}\right]$

Fig. S6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{C}_{8} \mathrm{MIM}\right]\left[\mathrm{HSO}_{4}\right]$

Fig. S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{C}_{10} \mathrm{MIM}\right]\left[\mathrm{HSO}_{4}\right]$

The acidity measurement

The Brønsted acid scales of the synthesized imidazolium-based ILs were determined using a Cary 5000 UV-vis spectrophotometer with a basic indicator according to the previously reported Hammett method. 4Nitroaniline ($5 \mathrm{mg} / \mathrm{L}, \mathrm{p} K(\mathrm{I}) \mathrm{aq}=0.99)$ was chosen as the basic indicator in water, and the concentration of each IL was $27 \mathrm{mmol} / \mathrm{L}$. The detailed absorbances of the unprotonated form of the indicator with different IL in water were shown in Figs. S8 and S9.

Fig. S8. Absorbance spectra of 4-nitroaniline (NPA) for BAILs with various anions in water

Fig. S9. Absorbance spectra of 4-nitroaniline (NPA) for BAILs with various cations in water

The characterization of Bisphenil F

The Bisphenil F is confirmed by the GC-MS analysis as shown in Fig.
S10. The peaks of Bisphenil F are composed of three isomer peak of 2,2'isomer (a), 2,4'-isomer (b) and 4,4'-isomer (c) with retention time of 22.8, 23.0, 23.5 min., respectively.

Fig. S10. GC-MS spectra of bisphenol F product

