Electronic Supplementary Information

Convenient One-Pot Multicomponent Strategy for the Synthesis of 6-Pyrrolylpyrimidines[†]

Pandi Dhanalakshmi^a, Sivakumar Shanmugam^a *

School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India

shivazzen@mkuniversity.org

Table of Contents

	Page(s)
1. General experimental information	SI-2
2. ¹ H, ¹³ C NMR spectrum of 2a-o	SI-3-16
3. ¹ H, ¹³ C NMR spectrum of 8a-ad	SI-17- 46
4. 1 H, 13 C NMR spectrum of 4a	SI-47
5. X-ray crystal structure of 8e	SI-48

I General Experimental information:

Melting points were determined on melting point apparatus equipped with a thermometer and were uncorrected. Unless stated otherwise, solvents and chemicals were obtained from commercial sources and used without further purification. The ¹H and ¹³CNMR spectra of the new compounds were measured at 400MHz, 300MHz and 100MHz, 75MHz respectively using Bruker NMR instrument in DMSO-d₆ or CDCl₃ and the chemical shifts are reported as δ values (ppm) relative to tetramethylsilane. IR values were measured by Thermo Nicolet 6700 FT IR Spectrometer using ATR (attenuated total reflection) KBr Cell. Mass analysis was done in Agilent LC-MS instruments and spectra were recorded in positive and negative mode. Elemental analysis recorded on Thermofinnigan flash 2000 organic elemental CHNS analyser. Petroleum ether employed in column chromatographic purification refers to the fraction which boils at 40-60 °C.

Figure S1a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 2a

Figure S1b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 2a

Figure S2a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 2b

Figure S2b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 2b

Figure S3b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 2c

Figure S4a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 2e

Figure S4b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 2e

Figure S5b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 2f

Figure S6a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 2g

Figure S6b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 2g

Figure S7b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 2h

Figure S8a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 2i

Figure S8b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 2i

Figure S9a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 2j

Figure S9b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 2j

Figure S10a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 2k

Figure S10b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 2k

Figure S11a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 2l

Figure S11b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 21

Figure S12b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 2m

Figure S13a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 2n

Figure S13b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 2n

Figure S14a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 20

Figure S14b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 20

Figure S15a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8a

Figure S15b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8a

Figure S16b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8b

Figure S17b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8C

Figure S18a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8d

Figure S18b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8d

Figure S19a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8e

Figure S19b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8e

Figure S20a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8f

Figure S20b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8f

Figure S21a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8g

Figure S21b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8g

Figure S22a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8h

Figure S22b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8h

Figure S23a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8i

Figure S23b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8i

Figure S24b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8j

Figure S25a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8k

Figure S25b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8k

Figure S26a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8I

Figure S26b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 81

Figure S27b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8m

Figure S28a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8n

Figure S28b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8n

Figure S29b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 80

20

ppm

Figure S30a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8p

Figure S30b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8p

Figure S31a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8q

Figure S31b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8q

Figure S32b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8r

Figure S33a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8s

Figure S33b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8s

Figure S34a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8t

Figure: S34b (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8t

Figure S35b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8u

Figure S36a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8v

Figure S36b: (75MHz, CDCl₃) ¹³C NMR spectrum of compound 8v

Figure S37b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8w

Figure S38a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound **8**x

Figure S38b: (75MHz, CDCl₃) ¹³C NMR spectrum of compound 8x

Figure S39a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8y

Figure S39b: (100MHz, CDCl₃) ¹³C NMR spectrum of compound 8y

Figure S40a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8z

Figure S40b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8z

Figure S41a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8aa

Figure S41b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8aa

Figure S42a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 8ab

Figure S42b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8ab

Figure S43b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8ac

Figure S44b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 8ad

Figure S45a: (400MHz, DMSO-d₆) ¹H NMR spectrum of compound 4a

Figure S45b: (100MHz, DMSO-d₆) ¹³C NMR spectrum of compound 4a

II X-ray crystal structure of 8e

