Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information

A Ru-Catalyzed One-pot Synthesis of Homopropargylic Amines from Alkyl Azides under Photolytic Conditions

Wook Jeong, Ji Hyung Lee, Jungjoon Kim, Won Jong Lee, Ju Hwa Seong, Jaiwook Park* and Young Ho Rhee*

Department of Chemistry, POSTECH (Pohang University of Science and Technology), Hyoja-dong, San 31, Pohang, Kyungbuk 790-784, Republic of Korea.

Table of Contents

I.	General information	
II.	General procedure for the homopropargylation	2
III.	Representative procedure for the preparation of azide	7
IV.	Assignment of the stereochemistry of 24	10
V.	Synthesis of 2,6-dialkyl-4-hydroxy-piperidine 26	
VI.	References	
VII.	¹ H- and ¹³ C-NMR spectra	

I. General information:

All solvents were dried and distilled according to the standard methods before use. Ruthenium catalysts 1 were synthesized according to the literature procedure.¹ AgSbF₆ were purchased from Aldrich Chemicals and stored in a dry-keeper. Au $\{P(C_6F_5)_3\}$ Cl was prepared according to the literature procedures.² Syntheses of homopropargylamines and imines were performed in a flame-dried J-young flask under nitrogen atmosphere. Reactions were monitored by thin-layer chromatography carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as a visulaizing agent and acidic *p*-anisaldehyde, PMA, ninhydrin and heat as developing agents. Flash chromatography was carried out on Merck 60 silica gel (230-400 mesh). Preparative thin-layer chromatography (PTLC) was carried out using silica gel 60 F_{254} on PLC plate purchased from Merck (1mm x 20 cm x 20 cm). ¹H and ¹³C NMR spectra were recorded with Bruker (300 MHz and 500 MHz) spectrometer. ¹H NMR spectra were referenced to residual CDCl₃ (7.26 ppm) and reported as follows; chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet). Chemical shifts of ¹³C NMR spectra were measured relative to CDCl₃ (77.23 ppm). Mass spectral data were obtained from the Korea Basic Science Institute (Daegu) on a Jeol JMS 700 high resolution mass spectrometer. Infrared spectra were recorded on a Shimadzu IR-470 spectrometer.

II. General procedure for the homopropargylation

The ruthenium catalyst **1** (2.6 mg, 0.0025 mmol) was introduced to a flame-dried J-young flask. The flask was filled with N₂ gas. Then THF (0.5 mL) was added to the J-young flask under N₂ gas flow condition. The solution was stirred at room temperature for 10 min without light to dissolve **1**. Then benzyl azide **2** (33.3 mg, 0.25 mmol) in THF (0.5 mL) and allenylboronic acid pinacol ester (134 μ L, 0.75 mmol) were added to the solution under N₂ gas flow condition. The reaction mixture was stirred at 50 °C under the 30 W fluoroscent light for 3 h. The reaction was quenched by adding CHCl₃ (1 mL). 1N HCl was added to the solution to make pH ~ 1. The solution was washed with Et₂O (3 x 5 mL) and neutralized by 6

N NaOH. The solution was extracted with Et₂O (5 x 5 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue oil was purified by preparative TLC eluting with hexane: isopropylamine = 95: 5 to give **3** as yellow oil (29.5 mg, 0.21 mmol, 81% yield). R_f = 0.64 (CH₂Cl₂: MeOH = 90:10). ¹H NMR (300 MHz, CDCl₃): δ = 2.07 (t, *J* = 2.6 Hz, 1H), 2.37 (br s, 2H), 2.54 (ddd, *J* = 16.6, 7.8, 2.6 Hz, 1H), 2.64 (ddd, *J* = 16.6, 5.3, 2.6 Hz, 1H), 4.20 (dd, *J* = 7.8, 5.3 Hz, 1H), 7.43-7.28 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ = 29.5, 54.9, 70.9, 81.6, 126.5, 127.8, 128.8, 143.8; IR: (cm⁻¹) v 3293, 2926, 2855, 1557, 1455, 1384; HRMS(FAB+) calcd for C₁₀H₁₂N: 146.0970, found: 146.0970.

Using the representative procedure, a mixture of **5** (40.8 mg, 0.25 mmol), ruthenium catalyst **1** (5.1 mg, 0.005 mmol) and allenylboronic acid pinacol ester (134 μ L, 0.75 mmol) were reacted at 50 °C under 30W fluoroscent light for 4 h to give **15** as pale yellow oil (30.5 mg, 0.174 mmol, 70% yield). R_f = 0.60 (CH₂Cl₂: MeOH = 90:10).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.70$ (br s, 2H), 2.04 (t, J = 2.7 Hz, 1H), 2.46 (ddd, J = 16.5, 8.1, 2.7 Hz, 1H), 2.56 (ddd, J = 16.5, 5.1, 2.7 Hz, 1H), 3.80 (s, 3H), 4.13 (dd, J = 8.0, 5.3 Hz, 1H), 6.84-6.92 (m, 2H), 7.27-7.35 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 30.0$, 54.3, 55.5, 70.6, 82.1, 114.0, 127.5, 136.7, 159.1; IR: (cm⁻¹) v 3290, 2925, 2855, 1663, 1611, 1512, 1369, 1302, 1247, 1176, 1109, 1034; HRMS(FAB+) calcd for C₁₁H₁₃NO: 176.1075, found: 176.1077.

Using the representative procedure, a mixture of **6** (36.8 mg, 0.25 mmol), ruthenium catalyst **1** (5.1 mg, 0.005 mmol) and allenylboronic acid pinacol ester (134 μ L, 0.75 mmol) were reacted at 50 °C under 30W fluoroscent light for 6 h to give **16** as yellow oil (25.8 mg, 0.163 mmol, 65% yield). R_f = 0.65 (CH₂Cl₂: MeOH = 90:10).

¹H NMR (300 MHz, CDCl₃): δ = 1.94 (br s, 2H), 2.04 (t, *J* = 2.6 Hz, 1H), 2.34 (s, 3H), 2.47 (ddd, *J* = 16.6, 8.0, 2.6 Hz, 1H), 2.58 (ddd, *J* = 16.6, 5.1, 2.6 Hz, 1H), 4.13 (dd, *J* = 7.9, 5.1

Hz, 1H), 7.15 (d, J = 7.9 Hz, 2H), 7.26 (d, J = 8.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 21.3, 29.9, 54.6, 70.6, 82.0, 126.3, 129.4, 137.3, 141.6;$ IR: (cm⁻¹) v 3292, 2925, 1515, 1458; HRMS(FAB+) calcd for C₁₁H₁₄N: 160.1126, found: 160.1128.

Using the representative procedure, a mixture of 7 (47.8 mg, 0.25 mmol), ruthenium catalyst 1 (5.1 mg, 0.005 mmol) and allenylboronic acid pinacol ester (134 μ L, 0.75 mmol) were reacted at 50 °C under 30W fluoroscent light for 6 h to give 17 as yellow oil (38.6 mg, 0.190 mmol, 76% yield). R_f = 0.67 (CH₂Cl₂: MeOH = 90:10).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.93$ -1.98 (br s, 2H), 2.04 (t, J = 2.6 Hz, 1H), 2.49 (ddd, J = 16.6, 7.7, 2.6 Hz, 1H), 2.60 (ddd, J = 16.6, 5.2, 2.6 Hz, 1H), 3.90 (s, 3H), 4.22 (dd, J = 7.6, 5.3 Hz, 1H), 7.46 (d, J = 8.2 Hz, 2H), 8.01 (d, J = 8.4 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 29.7, 52.3, 54.7, 71.1, 81.2, 126.6, 129.6, 130.1, 149.5, 167.1;$ IR: (cm⁻¹) v 3293, 2952, 1721, 1281, 1113; HRMS(FAB+) calcd for C₁₂H₁₄NO₂: 204.1025, found: 204.1025.

Using the representative procedure, a mixture of **8** (37.8 mg, 0.25 mmol), ruthenium catalyst **1** (7.6 mg, 0.0075 mmol) and allenylboronic acid pinacol ester (134 μ L, 0.75 mmol) were reacted at 50 °C under 30W fluoroscent light for 12 h to give **18** as pale yellow oil (27.7 mg, 0.170 mmol, 68% yield). R_f = 0.51 (CH₂Cl₂: MeOH = 90:10).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.71$ (br s, 2H), 2.04 (t, J = 2.7 Hz, 1H), 2.45 (ddd, J = 16.5, 7.8, 2.6 Hz, 1H), 2.55 (ddd, J = 16.5, 5.1, 2.6 Hz, 1H), 4.15 (dd, J = 7.7, 5.3 Hz, 1H), 6.97-7.07 (m, 2H), 7.31-7.40 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 30.0$, 54.2, 70.8, 81.6, 115.4 (d, J = 21.2 Hz), 128.0 (d, J = 8.0 Hz), 140.2 (d, J = 3.1 Hz), 162.3 (d, J = 243.8 Hz); IR: (cm⁻¹) v 3375, 3301, 2930, 1603, 1510, 1420, 1374, 1221, 1157, 1096, 1014; HRMS(FAB+) calcd for C₁₀H₁₀FN: 164.0876, found: 164.0872.

Using the representative procedure, a mixture of **9** (38.8 mg, 0.25 mmol), ruthenium catalyst **1** (5.1 mg, 0.005 mmol) and allenylboronic acid pinacol ester (134 μ L, 0.75 mmol) were reacted at 50 °C under 30W fluoroscent light for 12 h to give **19** as yellow oil (31.7 mg, 0.190 mmol, 76% yield). R_f = 0.47 (CH₂Cl₂: MeOH = 90:10).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.87$ (t, J = 6.7 Hz, 3H), 1.20-1.46 (m, 12H), 1.55 (br s, 2H), 2.00 (t, J = 2.6 Hz, 1H), 2.16 (ddd, J = 16.6, 7.1, 2.7 Hz, 1H), 2.33 (ddd, J = 16.6, 4.7, 2.6 Hz, 1H), 2.88 (dt, J = 11.0, 5.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.3$, 22.9, 26.5, 28.0, 29.5, 29.8, 32.0, 37.2, 50.5, 70.4, 82.2; IR: (cm⁻¹) v 3311, 2927, 2856, 1456, 1377; HRMS(FAB+) calcd for C₁₁H₂₂N: 168.1752, found: 168.1755.

Using the representative procedure, a mixture of **10** (32.2 mg, 0.25 mmol), ruthenium catalyst **1** (5.1 mg, 0.005 mmol) and allenylboronic acid pinacol ester (134 μ L, 0.75 mmol) were reacted at 50 °C under 30W fluoroscent light for 6 h to give **20** as pale yellow oil (21.5 mg, 0.153 mmol, 61% yield). R_f = 0.51 (CH₂Cl₂: MeOH = 90:10).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.29$ (t, J = 7.1 Hz, 3H), 1.77-1.80 (m, 2H), 2.05 (t, J = 2.7 Hz, 1H), 2.63 (dt, J = 4.4, 2.7 Hz, 2H), 3.62 (t, J = 5.7 Hz, 1H), 4.21 (qd, J = 7.1, 2.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.4$, 25.1, 53.4, 61.6, 71.5, 79.8, 174.0; IR: (cm⁻¹) v 3017, 2921, 2851, 1735, 1384, 1261; HRMS(FAB+) calcd for C₇H₁₂NO₂: 142.0868, found: 142.0868.

Using the representative procedure, a mixture of **11** (50.3 mg, 0.25 mmol), ruthenium catalyst **1** (5.1 mg, 0.005 mmol) and allenylboronic acid pinacol ester (134 μ L, 0.75 mmol) were reacted at 50 °C under 30W fluoroscent light for 12 h to give **21** as pale yellow oil (38.2 mg, 0.179 mmol, 71% yield). R_f = 0.42 (CH₂Cl₂: MeOH = 90:10).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.05$ (s, 6H), 0.89 (s, 9H), 1.52 (br s, 2H), 1.99 (t, J = 3.0

Hz, 1H), 2.29 (ddd, J = 16.7, 6.1, 2.7 Hz, 2H), 2.98 (dt, J = 12.3, 5.7 Hz, 1H), 3.56 (dd, J = 9.6, 5.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): $\delta = -5.2, 18.4, 24.1, 26.0, 51.9, 66.9, 70,3, 81.8;$ IR: (cm⁻¹) v 3079, 1579, 1516, 1437, 1294, 1234, 1119, 1036, 945; HRMS(FAB+) calcd for C₁₁H₂₄NOSi: 214.1627, found: 214.1629.

Using the representative procedure, a mixture of **12** (53.8 mg, 0.25 mmol), ruthenium catalyst **1** (5.1 mg, 0.005 mmol) and allenylboronic acid pinacol ester (134 μ L, 0.75 mmol) were reacted at 50 °C under 30W fluoroscent light for 12 h to give **22** as pale yellow oil (42.5 mg, 0.187 mmol, 75% yield). R_f = 0.49 (CH₂Cl₂: MeOH = 90:10).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.08$ (s, 6H), 0.91 (s, 9H), 1.57 (br s, 2H), 1.59-1.65 (m, 1H), 1.68-1.81 (m, 1H), 2.04 (t, J = 2.7 Hz, 1H), 2.24 (ddd, J = 16.5, 6.9, 2.6 Hz, 1H), 2.39 (ddd, J = 16.5, 5.0, 2.6 Hz, 1H), 3.12 (ddt, J = 7.8, 6.9, 4.8 Hz, 1H), 3.68-3.85 (m, 2H) ; ¹³C NMR (75 MHz, CDCl₃): $\delta = -5.1$, 18.5, 26.1, 28.3, 39.6, 48.3, 61.1, 70.4, 82.1; IR: (cm⁻¹) v 3312, 2930, 2858, 1629, 1473, 1386, 1362, 1256, 1091; HRMS(FAB+) calcd for C₁₂H₂₆NOSi: 228.1784, found: 228.1784.

Using the representative procedure, a mixture of **13** (31.3 mg, 0.25 mmol), ruthenium catalyst **1** (7.6 mg, 0.0075 mmol) and allenylboronic acid pinacol ester (134 μ L, 0.75 mmol) were reacted at 50 °C under 30W fluoroscent light for 24 h to give **23** as yellow oil (24.8 mg, 0.181 mmol, 72% yield). R_f = 0.45 (CH₂Cl₂: MeOH = 90:10).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.25$ -1.60 (m, 12H), 2.03 (t, J = 2.7 Hz, 1H), 2.26 (d, J = 2.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 22.5$, 26.0, 33.3, 38.1, 50.7, 71.1, 81.6; IR: (cm⁻¹) v 3017, 2925, 1384, 1262; HRMS(FAB+) calcd for C₉H₁₆N: 138.1283, found: 138.1284.

Using the representative procedure, a mixture of **14** (72.9 mg, 0.25 mmol), ruthenium catalyst **1** (7.6 mg, 0.0075 mmol) and allenylboronic acid pinacol ester (134 μ L, 0.75 mmol) were reacted at 50 °C under 30W fluoroscent light for 12 h to give **24** as pale yellow oil (64.6 mg, 0.212 mmol, 85% yield). R_f = 0.82 (CH₂Cl₂: MeOH = 90:10).

¹H NMR (300 MHz, CDCl₃): $\delta = -0.30$ (s, 0.6H), -0.09 (s, 2.4H), -0.02 (s, 0.6H), 0.06 (s, 2.4H), 0.85 (s, 1.8H), 0.89 (s, 7.2H), 1.39-1.46 (m, 2H), 1.98 (t, J = 2.6 Hz, 0.8H), 2.03 (t, J = 2.7 Hz, 0.2H), 2.19-2.46 (m, 2H), 2.71-2.78 (m, 2H), 2.92-3.00 (m, 1H), 3.92-3.99 (m, 1H), 7.18-7.29 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): $\delta = -4.8$, -4.5, -4.5, -4.4, 18.2, 18.3, 24.8, 25.1, 25.5, 26.1, 26.1, 38.9, 40.6, 52.8, 54.3, 70.2, 70.5, 75.4, 76.4, 82.3, 82.7, 126.5, 126.5, 128.5, 128.6, 129.7, 130.0, 138.6, 138.8; IR: (cm⁻¹) v 3311, 2955, 2929, 2857, 1252, 1084, 810, 777; HRMS(FAB+) calcd for C₁₈H₃₀NOSi: 304.2097, found: 304.2099.

III. Representative Procedure for the Preparation of Azides

A solution of benzyl bromide (2.0 g, 11.7 mmol) and sodium azide (2.28 g, 35.1 mmol) in DMF (58.5 mL, 0.2 M) was stirred at 70 °C for 11 h. The reaction mixture was quenched with water (30 mL). The solution was extracted with EtOAc (5 x 30 mL). The organic layers were combined and washed with brine (3 x 20 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue oil was purified by flash column chromatography on deactivated silica gel eluting with hexane: ether = 90:10 (1.48 g, 11.1 mmol, 95% yield). R_f = 0.68 (hexane: EtOAc = 90:10). The spectral data are in complete agreement with the literature data.³

¹H NMR (300 MHz, CDCl₃): δ = 4.39 (s, 2H), 7.38-7.52 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ = 54.4, 128.0, 128.0, 128.6, 135.3;

Yield: 86 % yield. $R_f = 0.33$ (Hexane: Ether = 95:5); The spectral data are in complete agreement with the literature data.⁴

¹H NMR (300 MHz, CDCl₃): δ = 3.84 (s, 3H), 4.29 (s, 2H), 6.92-6.96 (m, 2H), 7.25-7.30 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ = 54.6, 55.5, 114.4, 127.6, 129.9, 159.8.

Yield: 67 %. $R_f = 0.61$ (Hexane: Ether = 90: 10); The spectral data are in complete agreement with the literature data.⁵

¹H NMR (300 MHz, CDCl₃): δ = 2.37 (s, 3H), 4.29 (s, 2H), 7.14-7.25 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ = 21.4, 54.8, 128.5, 129.7, 132.5, 138.4.

Yield: 89 %. $R_f = 0.23$ (Hexane: Ether = 90: 10); The spectral data are in complete agreement with the literature data.⁶

¹H NMR (300 MHz, CDCl₃): δ = 3.92 (s, 3H), 4.41 (s, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 8.05 (d, *J* = 6.6, 1.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ = 52.4, 54.5, 128.1, 130.2, 130.3, 140.6, 166.8.

Yield: 91 % yield. $R_f = 0.47$ (Hexane: Ether= 95:5); The spectral data are in complete agreement with the literature data.⁴

¹H NMR (300 MHz, CDCl₃): δ = 4.32 (s, 2H), 7.05-7.11 (m, 2H), 7.28-7.32 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ = 54.3, 116.0 (d, *J* = 21.4 Hz), 130.2 (d, *J* = 8.2 Hz), 131.4 (d, *J* = 3.2 Hz), 162.9 (d, *J* = 245.5 Hz).

Yield: 77 % yield. $R_f = 0.83$ (Hexane: EtOAc= 90: 10); The spectral data are in complete agreement with the literature data.³

¹H NMR (300 MHz, CDCl₃): $\delta = 0.88$ (t, J = 6.8 Hz, 3H), 1.22-1.41 (m, 10H), 1.52-1.68 (m, 2H), 3.25 (t, J = 7.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.3$, 22.8, 26.9, 29.0, 29.3, 29.4, 32.0, 51.7.

Yield: 84 % yield. $R_f = 0.48$ (Hexane: EtOAc= 90: 10); The spectral data are in complete agreement with the literature data.⁶

¹H NMR (300 MHz, CDCl₃): δ = 1.34 (t, *J* = 7.1 Hz, 3H), 3.89 (s, 2H), 4.29 (q, *J* = 7.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ = 14.3, 50.5, 62.0, 168.5.

Yield: 72.6 %. $R_f = 0.65$ (Hexane: EtOAc = 95:5); The spectral data are in complete agreement with the literature data.⁷

¹H NMR (300 MHz, CDCl₃): $\delta = 0.09$ (s, 6H), 0.91 (s, 9H), 3.26 (t, J = 5.1 Hz, 2H), 3.80 (t, J = 5.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = -5.2$, 18.4, 26.0, 53.4, 62.8.

Yield: 57.4 %. $R_f = 0.65$ (Hexane: EtOAc = 95:5); The spectral data are in complete agreement with the literature data.⁸

¹H NMR (300 MHz, CDCl₃): $\delta = 0.09$ (s, 6H), 0.89 (s, 9H), 1.77 (dt, J = 6.6, 6.0 Hz, 2H), 3.39 (t, J = 6.6 Hz, 2H), 3.69 (t, J = 6.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): $\delta = -5.2$, 18.5, 26.1, 32.0, 48.4, 59.8.

Yield = 73%. $R_f = 0.81$ (hexane: EtOAC = 90: 10). The spectral data are in complete agreement with the literature data.⁶

¹H NMR (300 MHz, CDCl₃): δ = 1.06-1.40 (m, 5H), 1.42-1.58 (m, 1H), 1.61-1.74 (m, 2H), 1.75-1.97 (m, 2H), 3.20-3.41 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ = 24.2, 25.3, 31.6, 59.9.

Yield: 64%. $R_f = 0.76$ (hexane: EtOAc = 80: 20). The spectral data are in complete agreement with the literature data.⁹

¹H NMR (300 MHz, CDCl₃): δ = -0.10 (s, 3H), -0.05 (s, 3H), 0.89 (s, 9H), 2.79 (dd, *J* = 13.7, 6.8 Hz, 1H), 2.85 (dd, *J* = 13.7, 6.8 Hz, 1H), 3.08 (dd, *J* = 12.5, 5.3 Hz, 1H), 3.25 (dd, *J* = 12.5, 4.1 Hz, 1H), 3.98 (tdd, *J* = 6.6, 5.3, 4.1 Hz, 1H), 7.12-7.24 (m, 3H), 7.26-7.37 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ = -4.9, -4.7, 18.2, 26.0, 41.8, 56.1, 73.4, 126.7, 128.6, 129.9, 138.0.

IV. Assignment of the stereochemistry of 24

To a solution of **24** (10 mg, 0.033 mmol) and quinoline (1 drop in 7 mL of MeOH) in MeOH (0.16 mL) was added Lindlar's catalyst (2 mg, 20 wt%) at room temperature. Then the atmosphere was changed slowly to H_2 gas and was stirred for 1 hour. After the complete conversion, the reaction mixture was filtered over celite and concentrated under reduced pressure. **S-24** was obtained in 81% NMR yield with 79: 21 diastereoselectivity. Syn-product was deteremined as a major diastereomer by comparison ¹H-NMR spectra to the literature data.⁶

¹H NMR (300 MHz, CDCl₃): δ = -0.14 (s, 3H), 0.03 (s, 3H), 0.94 (s, 9H), 1.24-1.38 (m, 2H), 2.04-2.08 (m, 2H), 2.22-2.37 (m, 1H), 2.54-2.66 (m, 1H), 2.67-2.78 (m, 1H), 2.97 (dd, *J* = 13.4. 7.1 Hz, 1H), 3.74-3.89 (m, 1H), 5.00-5.16 (m, 2H), 5.64-5.88 (m, 1H), 7.19-7.30 (m, 3H), 7.31-7.42 (m, 2H).

V. Synthesis of 2,6-dialkyl-4-hydroxy-piperidine 26

Preparation of substrate 25

To **3** (232 mg, 1.60 mmol) and triethylamine (0.54 mL, 3.20 mmol) in CH₂Cl₂ (8.0 mL, 0.2 M) was added acetyl chloride (0.14 mL, 1.92 mmol) at room temperature. The reaction mixture was stirred at room temperature for 5 h. The reaction was quenched with water (10 mL). The solution was extracted with CH₂Cl₂ (3 x 5 mL). The organic layers were combined, washed with saturated NaHCO₃ (10 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue oil was purified by flash column chromatography on silica gel eluting with hexane: EtOAc = 93: 7 to give the substrate **25** as a white powder (200 mg, 1.07 mmol, 67% yield). R_f = 0.15 (hexane: EtOAc = 50:50). The spectral data are in complete agreement with the literature data.¹⁰

¹H NMR (300 MHz, CDCl₃): $\delta = 2.02$ (t, J = 2.4 Hz, 1H), 2.05 (s, 3H), 2.77 (m, 2H), 5.23 (m, 1H), 6.01 (br s, 1H), 7.26-7.40 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 23.6$, 25.7, 51.1, 71.7, 80.2, 126.8, 128.0, 128.9, 140.5, 169.6.

Gold(I)-catalyzed cycloisomerization-reduction of substrate 25

To **25** (37.4 mg, 0.2 mmol) and 4Å MS (200 mg) was added a solution of MsOH (15.6 μ L, 0.24 mmol) and [Au(PPh₃)]⁺NTf₂⁻ (7.4 mg, 0.01 mmol) in CH₂Cl₂ (4.0 mL). The reaction mixture was stirred at room temperature for 20 min and cooled to -78 °C. Catecholborane (1.2 mL, 1.2 mmol) was added dropwise to the reaction mixture. The reaction mixture was slowly warmed to room temperature and stirred for 10 h. The reaction was quenched with MeOH (2 mL) and stirred for 15 min. Saturated sodium tartarate solution (5 mL) was added and then the solution was stirred for 15 min. Brine (40 mL) and saturated NaOH (20 mL) was added. The solution was extracted with CH₂Cl₂ (4 x 20 mL). The organic layers were

combined, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue oil was purified by preparative TLC eluting with hexane: EtOAc = 20: 80 to give **26** as a white solid (21.8 mg, 0.114 mmol, 57% yield). $R_f = 0.11$ (hexane: EtOAc = 20: 80). The spectral data are in complete agreement with the literature data.¹⁰

¹H NMR (300 MHz, CDCl₃): δ = 1.16 (q, *J* = 11.4 Hz, 1H), 1.17 (d, *J* = 6.3 Hz, 3H), 1.45 (q, *J* = 11.4 Hz, 1H), 1.62 (bs, 2H), 2.01 (m, 1H), 2.11 (m, 1H), 2.86 (m, 1H), 3.69 (dd, *J* = 2.4, 11.4 Hz, 1H), 3.81 (m, 1H), 7.21 – 7.42 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ = 22.5, 43.4, 43.4, 50.7, 59.7, 69.7, 126.7, 127.3, 128.5, 143.9.

VI. References:

- 1. C. P. Casey, T. E. Vos, S. W. Singer, I. A. Guzei, Organometallics, 2002, 21, 5038.
- 2. J.-E. Kang, H.-B. Kim, J.-W. Lee, S. Shin, Org. Lett., 2006, 8, 3537.
- 3. C. Pardin, I. Roy, W. D. Lubell, J. W. Keilor, Chem. Biol. Drug Des., 2008, 72, 189.
- A. Chakraborty, S. Dey, S. Sawoo, N. N. Adarsh, A. Sarkar, Organometallics, 2010, 29, 6619.
- R. M. Pinto, R. I. Olariu, J. Lameiras, F. T. Martins, A. A. Dias, G. J. Langley, P. Rodrigues, C. D. Maycock, J. P. Santos, M. F. Duarte, M. T. Fernandez, M. L. Costa, J. Mol. Struct., 2010, 980, 163.
- J. H. Lee, S. Gupta, W. Jeong, Y. H. Rhee, J. Park, Angew. Chem., Int. Ed. 2012, 51, 10851.
- 7. H. S. Jr. Richard, F. M. Andrew, L. S. Jr. Donald, N. C. Gwendolyn, J. M. Christopher, J. Org. Chem. Soc., 1988, 53, 1467.
- 8. A. B. Ryan, W. Morgan, T. L. Jason, S. P. James, Org. Lett., 2010, 12, 336.
- 9. R. T. Sawant, S. B. Waghmode, Tetrahedrron, 2010, 66, 2010.
- 10. L. Cui, C. Li, L. Zhang, Angew. Chem., Int. Ed., 2010, 49, 9178.

VII. ¹H- and ¹³C-NMR spectra:

