Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information for:

Direct Electron Transfer from Alcohol Dehydrogenase

Fabio Lima and Gilberto Maia*

Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, Campo Grande, MS 79074-460, Brazil

*To whom correspondence should be addressed

Figure S1. Hydrodynamic cyclic voltammograms for bare GC (*a*, second scan), GC/NAD⁺/Nafion (*b*, first; *c*, second; *d*, 30th scan), and GC/NADH/Nafion (*e*, first; *f*, second; *g*, 30th scan) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5). First scans started at –0.4 V in the positive-going direction. ω = 200 rpm, v = 10 mV s⁻¹.

Figure S2. Hydrodynamic cyclic voltammograms for bare GC (*a*, second scan), GC/ADH-NAD⁺/Nafion (*b*, first; *c*, second; *d*, 30th scan), GC/ADH-NADH/Nafion (*e*, first; *f*, second; *g*, 30th scan), and GC/PM-ADH-NAD⁺/Nafion (*h*, first; *i*, second; *j*, 30th scan) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5). First scans started at -0.4 V in the positive-going direction. ω = 200 rpm, v = 10 mV s⁻¹.

Figure S3. Hydrodynamic cyclic voltammograms for bare GC (*a*, first scan) and GC/ADH-NAD⁺/Nafion (*b*, first; *c*, second; *d*, third; *e*, fifth; *f*, 10th; *g*, 20th; *h*, 30th scan) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5). First scans started at 0.2 V. $\omega = 200$ rpm, v = 10 mV s⁻¹.

Figure S4. Hydrodynamic cyclic voltammograms for a GC/VC XC-72/PM-ADH/Nafion electrode (*a*, first; *b*, second; *c*, third; *d*, fifth; *e*, 10th; *f*, 20th; *g*, 20th scan) in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5). First scan started at 0.2 V. ω = 200 rpm, v = 10 mV s⁻¹.

Figure S5. Hydrodynamic cyclic voltammograms for (A) bare GC (*a*, second scan), GC/NAD⁺/Nafion (*b*, first; *c*, second; *d*, third; *e*, fifth; *f*, 10th; *g*, 20th; *h*, 30th scan), and GC/NADH/Nafion (*i*, first; *j*, second; *k*, third; *l*, 30th scan), and (B) bare GC (*a*, second scan) and (B) GC/NAD⁺/Nafion (*b*, first; *c*, second; *d*, third; *e*, fifth; *f*, 10th; *g*, 20th; *h*, 30th scan) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol. First scans started at -0.4 V in the positive-going direction. ω = 200 rpm, v = 10 mV s⁻¹.

Figure S6. Hydrodynamic cyclic voltammograms for bare GC (*a*, second scan) and for the first (*b*), second (*c*), third (*d*), fifth (*e*), 10th (*f*), 20th (*g*), and 30th (*h*) scans employing (A) GC/ADH-NAD⁺/Nafion and (B) GC/ADH-NADH/Nafion electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol. First scans started at –0.4 V in the positive-going direction. ω = 200 rpm, v = 10 mV s⁻¹.

Figure S7. Hydrodynamic cyclic voltammograms for bare GC (*a*, second scan) and for the first (*b*), second (*c*), third (*d*), fifth (*e*), 10th (*f*), 20th (*g*), and 30th (*h*) scans employing (A) GC/ADH-NAD⁺/Nafion, (B) GC/PM-ADH-NAD⁺/Nafion, (C) GC/ADH-NADH/Nafion, and (D) GC/PM-ADH-NADH/Nafion electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol. First scans started at –0.4 V in the positive-going direction. ω = 200 rpm, v = 10 mV s⁻¹. Inset (A): GC/ADH-NAD⁺/Nafion, with first scan starting at 0.2 V in the positive-going direction.

Figure S8. Hydrodynamic cyclic voltammograms for (A) GC/VC XC-72/PM/Nafion (*a*, first; *b*, second; *c*, 30th scan) and GC/VC XC-72/PM-ADH/Nafion (*d*, first; *e*, second; *f*, third; *g*, fifth; *h*, 10th; *i*, 20th; *j*, 30th scan) electrodes, with first scans starting at 0.2 and –0.4 V in the positive-going direction, respectively. Also depicted are the hydrodynamic cyclic voltammograms for the first (*a*), second (*b*), third (*c*), fifth (*d*), 10th (*e*), 20th (*f*), and 30th (*g*) scans employing GC/VC XC-72/PM-ADH/Nafion (B) and GC/VC XC-72/PM-ADH-NAD⁺/Nafion (C) electrodes, with scans starting at 0.2 V in the positive-going direction in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol. ω = 200 rpm, v = 10 mV s⁻¹.

Figure S9. Cyclic voltammograms for bare GC (*a*) and, after 30 HCV scans in 0.1 M KH_2PO_4 (pH 6.5) containing 100 mM ethanol, for bare GC (*b*), GC/ADH/Nafion(in the absence of ethanol) (*c*), GC/PM-ADH/Nafion(in the absence of ethanol) (*d*), GC/NAD⁺/Nafion (in the absence of ethanol) (*e*), GC/PM-ADH-NAD⁺/Nafion (in the absence of ethanol) (*f*), GC/ADH/Nafion (*g*), GC/PM-ADH/Nafion (*h*), and GC/PM-ADH-NAD⁺/Nafion (*i*) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mM K₃Fe(CN)₆. v = 50 mV s⁻¹.

Figure S10. Cyclic voltammograms for bare GC (*a*) and, after 30 HCV scans in 0.1 M KH₂PO₄ (pH 6.5), for GC/NAD⁺/Nafion (*b*), and GC/NADH/Nafion (*c*) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mMK₃Fe(CN)₆. v = 50 mV s⁻¹.

Figure S11. Impedance plane plots for bare GC (**Φ**) and, after 30 HCV scans in 0.1 M KH₂PO₄ (pH 6.5), for GC/NAD⁺/Nafion (\square), and GC/NADH/Nafion (\square) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mMK₃Fe(CN)₆. Potential perturbation: 25 mV (rms). Frequency range: 100 kHz–10 mHz. Constant potential for EIS acquisition: OCP (0.20 V *vs.* SCE on average). Lines represent spectra (adjusted) calculated using a non-linear least-squares program, conforming to the equivalent circuit $R_{\rm s}[Q_{\rm dl}(R_{\rm ct}W_{\rm f})]$, or $R_{\rm s}[Q_{\rm dl}(R_{\rm ct}Q_{\rm lf})]$. Calculated average values: $R_{\rm s} = 77 \ \Omega$, $Q_{\rm dl} = 3.5 \ \mu {\rm F s}^{\rm n-1}$, n = 0.9, and $W_{\rm lf} = 56 \ \mu {\rm F}$. Inset: Impedance plane plots from the main graph restricted to 5 kΩ.

Figure S12. Cyclic voltammograms for bare GC (*a*) and, after 30 HCV scans in 0.1 M KH₂PO₄ (pH 6.5), for GC/ADH-NAD⁺/Nafion (*b*), GC/ADH-NADH/Nafion (*c*), GC/PM-ADH-NAD⁺/Nafion (*d*), and GC/VC XC-72/PM-ADH/Nafion (*e*) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mM K₃Fe(CN)₆. v = 50 mV s⁻¹.

Figure S13. Impedance plane plots for bare GC (**Φ**) and, after 30 HCV scans in 0.1 M KH₂PO₄ (pH 6.5), for GC/ADH-NAD⁺/Nafion (\square), GC/PM-ADH-NAD⁺/Nafion (•), and GC/VC XC-72/PM-ADH/Nafion (*) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mMK₃Fe(CN)₆. Potential perturbation: 25 mV (rms). Frequency range: 100 kHz–10 mHz. Constant potential for EIS acquisition: OCP (0.14 V *vs.* SCE on average). Lines represent spectra (adjusted) calculated using a non-linear least-squares program, conforming to the equivalent circuit $R_s[Q_{dl}(R_{ct}W_{ff})]$, or $R_s[Q_{dl}(R_{ct}Q_{if})]$. Calculated average values: $R_s = 77 \ \Omega$, $Q_{dl} = 5.3 \ \mu\text{F s}^{n-1}$, n = 0.9, and $W_{ff} = 86 \ \mu\text{F}$. Inset: Impedance plane plots from the main graph restricted to 10 kΩ.

Figure S14. Cyclic voltammograms for bare GC (*a*) and, after 30 HCV scans in 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol, for GC/NAD⁺/Nafion (*b*), GC/NAD⁺/Nafion' (*c*), GC/NADH/Nafion (*d*), GC/ADH-NAD⁺/Nafion (*e*), and GC/ADH-NADH/Nafion (*f*) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mM K₃Fe(CN)₆. v = 50 mV s⁻¹.

Figure S15. Impedance plane plots for bare GC (**Φ**) and, after 30 HCV scans in 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol, for GC/NAD⁺/Nafion (\square), GC/NAD⁺/Nafion (\square), GC/NADH/Nafion (•), GC/ADH-NAD⁺/Nafion (*), and GC/ADH-NADH/Nafion (•) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mMK₃Fe(CN)₆. Potential perturbation: 25 mV (rms). Frequency range: 100 kHz–10 mHz. Constant potential for EIS acquisition: OCP (0.14 V vs. SCE on average). Lines represent spectra (adjusted) calculated using a non-linear least-squares program, conforming to the equivalent circuit $R_s[Q_{dl}(R_{ct}W_{lf})]$, or $R_s[Q_{dl}(R_{ct}Q_{lf})]$. Calculated average values: $R_s = 83 \Omega$, $Q_{dl} = 6.0 \mu F s^{n-1}$, n = 0.9, and $W_{lf} = 104 \mu F$. Inset: Impedance plane plots from the main graph restricted to 10 kΩ.

Figure S16. Cyclic voltammograms for bare GC (*a*) and, after 30 HCV scans in 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol, for GC/ADH-NAD⁺/Nafion (*b*), GC/ADH-NAD⁺/Nafion (narrow potential scan window) (*c*), GC/PM-ADH-NAD⁺/Nafion (*d*), GC/ADH-NADH/Nafion (*e*), and GC/PM-ADH-NADH/Nafion (*f*) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mM K₃Fe(CN)₆. v = 50 mV s⁻¹.

Figure S17. Impedance plane plots for bare GC (O) and, after 30 HCV scans in 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol, for GC/ADH-NAD⁺/Nafion (ca), GC/ADH-NAD⁺/Nafion (narrow potential scan window) (□), GC/PM-ADH-NAD⁺/Nafion (*), GC/ADH-NADH/Nafion (*), and GC/PM-ADH-NADH/Nafion (♦) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mM K₃Fe(CN)₆. Potential perturbation: 25 mV (rms). Frequency range: 100 kHz-10 mHz. Constant potential for EIS acquisition: OCP (0.16 V vs. SCE on average). Lines represent spectra (adjusted) calculated using a non-linear least-squares program, conforming to the equivalent circuit $R_s[Q_{dl}(R_{ct}W_{lf})]$, or $R_s[Q_{dl}(R_{ct}Q_{lf})]$. Calculated average values: $R_{\rm s}$ = 87 Ω , $Q_{\rm dl}$ = 6.0 μ F sⁿ⁻¹, n = 0.9, and $W_{\rm lf}$ = 76 μ F. Inset: Impedance plane plots from the main graph restricted to 40 k Ω .

Figure S18. Cyclic voltammograms for bare GC (*a*) and, after 30 HCV scans in 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol, for GC/VC XC-72/PM/Nafion (*b*), GC/VC XC-72/PM-ADH/Nafion (*c*), and GC/VC XC-72/PM-ADH-NAD⁺/Nafion (*d*) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mM K₃Fe(CN)₆. v = 50 mV s⁻¹.

Figure S19. Impedance plane plots for bare GC (**Φ**) and, after 30 HCV scans in 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol, for GC/VC XC-72/PM/Nafion (\square), GC/VC XC-72/PM-ADH/Nafion (\square), and GC/VC XC-72/PM-ADH-NAD⁺/Nafion (•) electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mMK₃Fe(CN)₆. Potential perturbation: 25 mV (rms). Frequency range: 100 kHz–10 mHz. Constant potential for EIS acquisition: OCP (0.26 V vs. SCE on average). Lines represent spectra (adjusted) calculated using a non-linear least-squares program, conforming to the equivalent circuit $R_s[Q_{dl}(R_{ct}W_{lf})]$, or $R_s[Q_{dl}(R_{ct}Q_{lf})]$. Calculated average values: $R_s = 83 \Omega$, $Q_{dl} = 22 \mu$ F s^{n–1}, n = 0.8, and $W_{lf} = 122 \mu$ F. Inset: Impedance plane plots from the main graph restricted to 10 kΩ.

Figure S20. Cyclic voltammograms after 5 HCV scans in 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol for bare GC at 20 mV s⁻¹ (*a*), and GC/PM-ADH-NAD⁺/Nafion electrodes at 20 (*b*), 50 (*c*), 80 (*d*), and 120 mV s⁻¹ (*e*) in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mM K₃Fe(CN)₆. v = 50 mV s⁻¹.

Figure S21. Impedance plane plots after 5 HCV scans in 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol for bare GC at 20 mV s⁻¹ (**Φ**) and GC/PM-ADH-NAD⁺/Nafion electrodes at 20 (ca), 50 (**□**), 80 (•), and 120 mV s⁻¹ (*) in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mMK₃Fe(CN)₆. Potential perturbation: 25 mV (rms). Frequency range: 100 kHz–10 mHz. Constant potential for EIS acquisition: OCP (0.20 V *vs.* SCE on average). Lines represent spectra (adjusted) calculated using a non-linear least-squares program, conforming to the equivalent circuit $R_s[Q_{dl}(R_{ct}W_{ff})]$, or $R_s[Q_{dl}(R_{ct}Q_{ff})]$. Calculated average values: $R_s = 86 \Omega$, $Q_{dl} = 6 \mu$ F s^{n–1}, *n* = 0.9, and $W_{ff} = 80 \mu$ F. Inset: Impedance plane plots from the main graph restricted to 35 kΩ.

Table S1. Approximate R_{ct} and k^0 (or k_{app}^0) values obtained from non-linear leastsquares calculations for elements of the equivalent circuit $R_s[Q_{dl}(R_{ct}W_{lf})]$, or $R_s[Q_{dl}(R_{ct}Q_{lf})]$, adjusted for EIS responses (Figures S11, S13, S15, S17, and S19) provided by bare GC, GC/NAD⁺/Nafion, GC/NADH/Nafion, GC/VC XC-72/PM/Nafion, GC/VC XC-72/PM-ADH/Nafion, GC/ADH-NAD⁺/Nafion, GC/ADH-NADH/Nafion, GC/PM-ADH-NAD⁺/Nafion, GC/PM-ADH-NADH/Nafion, and GC/VC XC-72/PM-ADH-NAD⁺/Nafion electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mM K₃Fe(CN)₆.

Electrode	$R_{\rm ct}$ (k Ω)	$k^{0} \text{ or } k_{app}^{0}$
Bare GC	0.75	180
CC/NAD ⁺ /Nation after 30 HCV scans in	5	28
0.1 M KH DO (pH 6.5) (Eiguro S11)	5	20
CC/NADH/Nation after 20 HC/(acong in	11	10
	14	10
0.1 IVI KH_2PO_4 (pH 0.5) (Figure 511)	400	0.0
GC/ADH-NAD ⁻ /Nation after 30 HCV	433	0.3
scans in 0.1 M KH ₂ PO ₄ (pH 6.5) (Figure		
S13)	000	
GC/ADH-NADH/Nation after 30 HCV	232	0.6
scans in 0.1 M KH ₂ PO ₄ (pH 6.5) (Figure		
S13)		
GC/PM-ADH-NAD ⁺ /Nafion after 30 HCV	74	1.8
scans in 0.1 M KH ₂ PO ₄ (pH 6.5) (Figure		
S13)		
GC/VC XC-72/PM-ADH/Nafion after 30	10	14
HCV scans in 0.1 M KH ₂ PO ₄ (pH 6.5)		
(Figure S13)		
GC/NAD ⁺ /Nafion after 30 HCV scans in	20	6.6
0.1 M KH ₂ PO ₄ (pH 6.5) containing 100		
mM ethanol (Figure S15)		
GC/NAD ⁺ /Nafion' after 30 HCV scans in	4.2	32
0.1 M KH ₂ PO ₄ (pH 6.5) containing 100		
mM ethanol (Figure S15)		
GC/NADH/Nafion after 30 HCV scans in	12	11
0.1 M KH ₂ PO ₄ (pH 6.5) containing 100		
mM ethanol (Figure S15)		
GC/ADH-NAD*/Nafion after 30 HCV	51	2.6
scans in 0.1 M KH₂PO₄ (pH 6.5)		
containing 100 mM ethanol (Figure S15)		
GC/ADH-NADH/Nafion after 30 HCV	132	1.0
scans in 0.1 M KH₂PO₄ (pH 6.5)		
containing 100 mM ethanol (Figure S15)		
GC/ADH-NAD ⁺ /Nafion after 30 HCV	2161	0.06
scans in 0.1 M KH₂PO₄ (pH 6.5)		
containing 100 mM ethanol (Figure S17)		
GC/ADH-NAD ⁺ /Nafion after 30 HCV	193	0.7
scans in 0.1 M KH ₂ PO ₄ (pH 6.5)	100	011
containing 100 mM ethanol (narrow		
potential scan window) (Figure S17)		
GC/PM-ADH-NAD ⁺ /Nafion after 30 HCV	212	0.6
	<u> </u>	0.0

containing 100 mM ethanol (Figure S17)GC/ADH-NADH/Nafion after 30 HCV1031.3scans in 0.1 M KH2PO4 (pH 6.5)1031.3containing 100 mM ethanol (Figure S17)GC/PM-ADH-NADH/Nafion after 30 HCV314.2scans in 0.1 M KH2PO4 (pH 6.5)314.2containing 100 mM ethanol (Figure S17)GC/VC XC-72/PM/Nafion after 30 HCV245.6containing 100 mM ethanol (Figure S17)GC/VC XC-72/PM/Nafion after 30 HCV245.6scans in 0.1 M KH2PO4 (pH 6.5)containing 100 mM ethanol (Figure S19)449.3GC/VC XC-72/PM-ADH-NAD+/Nafion149.39.3after 30 HCV scans in 0.1 M KH2PO4 (pH6.5) containing 100 mM ethanol (Figure S19)6.5) containing 100 mM ethanol (Figure S19)	scans in 0.1 M KH ₂ PO ₄ (pH 6.5)		
GC/ADH-NADH/Nafion after 30 HCV1031.3scans in 0.1 M KH2PO4 (pH 6.5)1031.3containing 100 mM ethanol (Figure S17) 31 4.2GC/PM-ADH-NADH/Nafion after 30 HCV 31 4.2scans in 0.1 M KH2PO4 (pH 6.5) 31 4.2containing 100 mM ethanol (Figure S17) $GC/VC XC-72/PM/Nafion after 30 HCV$ 24 GC/VC XC-72/PM/Nafion after 30 HCV 24 5.6 scans in 0.1 M KH2PO4 (pH 6.5) $GC/VC XC-72/PM/Nafion after S19$) $GC/VC XC-72/PM-ADH-NAD^+/Nafion$ GC/VC XC-72/PM-ADH-NAD+/Nafion 14 9.3 after 30 HCV scans in 0.1 M KH2PO4 (pH 6.5) containing 100 mM ethanol (Figure S19)GC/VC XC-72/PM-ADH-NAD+/Nafion 14 9.3	containing 100 mM ethanol (Figure S17)		
scans in 0.1 M KH ₂ PO ₄ (pH 6.5) containing 100 mM ethanol (Figure S17) GC/PM-ADH-NADH/Nafion after 30 HCV 31 4.2 scans in 0.1 M KH ₂ PO ₄ (pH 6.5) containing 100 mM ethanol (Figure S17) GC/VC XC-72/PM/Nafion after 30 HCV 24 5.6 scans in 0.1 M KH ₂ PO ₄ (pH 6.5) containing 100 mM ethanol (Figure S19) GC/VC XC-72/PM-ADH-NAD ⁺ /Nafion 14 9.3 after 30 HCV scans in 0.1 M KH ₂ PO ₄ (pH 6.5) containing 100 mM ethanol (Figure	GC/ADH-NADH/Nafion after 30 HCV	103	1.3
containing 100 mM ethanol (Figure S17) GC/PM-ADH-NADH/Nafion after 30 HCV 31 4.2 scans in 0.1 M KH ₂ PO ₄ (pH 6.5) containing 100 mM ethanol (Figure S17) GC/VC XC-72/PM/Nafion after 30 HCV 24 5.6 scans in 0.1 M KH ₂ PO ₄ (pH 6.5) containing 100 mM ethanol (Figure S19) GC/VC XC-72/PM-ADH-NAD ⁺ /Nafion 14 9.3 after 30 HCV scans in 0.1 M KH ₂ PO ₄ (pH 6.5) containing 100 mM ethanol (Figure	scans in 0.1 M KH ₂ PO ₄ (pH 6.5)		
GC/PM-ADH-NADH/Nafion after 30 HCV314.2scans in 0.1 M KH2PO4 (pH 6.5)containing 100 mM ethanol (Figure S17) 5.6 GC/VC XC-72/PM/Nafion after 30 HCV24 5.6 scans in 0.1 M KH2PO4 (pH 6.5) 5.6 5.6 containing 100 mM ethanol (Figure S19) $6C/VC XC-72/PM-ADH-NAD^+/Nafion$ 14 9.3 9.3 9.3 after 30 HCV scans in 0.1 M KH2PO4 (pH 6.5) 5.6	containing 100 mM ethanol (Figure S17)		
scans in 0.1 M KH2PO4 (pH 6.5)containing 100 mM ethanol (Figure S17)GC/VC XC-72/PM/Nafion after 30 HCV24scans in 0.1 M KH2PO4 (pH 6.5)5.6containing 100 mM ethanol (Figure S19)6C/VC XC-72/PM-ADH-NAD+/NafionGC/VC XC-72/PM-ADH-NAD+/Nafion149.3after 30 HCV scans in 0.1 M KH2PO4 (pH6 5) containing 100 mM ethanol (Figure A	GC/PM-ADH-NADH/Nafion after 30 HCV	31	4.2
containing 100 mM ethanol (Figure S17)GC/VC XC-72/PM/Nafion after 30 HCV24scans in 0.1 M KH2PO4 (pH 6.5)containing 100 mM ethanol (Figure S19)GC/VC XC-72/PM-ADH-NAD+/Nafion149.3after 30 HCV scans in 0.1 M KH2PO4 (pH6 5) containing 100 mM ethanol (Figure	scans in 0.1 M KH ₂ PO ₄ (pH 6.5)		
GC/VC XC-72/PM/Nafion after 30 HCV245.6scans in 0.1 M KH2PO4 (pH 6.5)containing 100 mM ethanol (Figure S19) $6C/VC XC-72/PM-ADH-NAD^+/Nafion$ 14 9.3 after 30 HCV scans in 0.1 M KH2PO4 (pH 6.5) containing 100 mM ethanol (Figure ADH	containing 100 mM ethanol (Figure S17)		
scans in 0.1 M KH_2PO_4 (pH 6.5) containing 100 mM ethanol (Figure S19) GC/VC XC-72/PM-ADH-NAD ⁺ /Nafion 14 9.3 after 30 HCV scans in 0.1 M KH_2PO_4 (pH 6.5) containing 100 mM ethanol (Figure	GC/VC XC-72/PM/Nafion after 30 HCV	24	5.6
containing 100 mM ethanol (Figure S19)GC/VC XC-72/PM-ADH-NAD+/Nafion149.3after 30 HCV scans in 0.1 M KH_2PO_4 (pH6.5) containing 100 mM ethanol (Figure	scans in 0.1 M KH ₂ PO ₄ (pH 6.5)		
GC/VC XC-72/PM-ADH-NAD+/Nafion14 9.3 after 30 HCV scans in 0.1 M KH2PO4 (pH6.5) containing 100 mM ethanol (Figure	containing 100 mM ethanol (Figure S19)		
after 30 HCV scans in 0.1 M KH ₂ PO ₄ (pH	GC/VC XC-72/PM-ADH-NAD ⁺ /Nafion	14	9.3
6.5) containing 100 mM ethanol (Figure	after 30 HCV scans in 0.1 M KH ₂ PO ₄ (pH		
	6.5) containing 100 mM ethanol (Figure		
S19)	S19)		

^[a] k^0 (or k_{app}^0) values were obtained from R_{ct} as described in references [1-4].

Table S2. Approximate R_{ct} and k^0 (or k_{app}^0) values obtained from non-linear leastsquares calculations for elements of the equivalent circuit $R_s[Q_{dl}(R_{ct}W_{lf})]$, or $R_s[Q_{dl}(R_{ct}Q_{lf})]$, adjusted for EIS responses (Figure S21) provided by bare GC and GC/PM-ADH-NAD⁺/Nafion electrodes in N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 1 mM K₃Fe(CN)₆, after five HCV scansin N₂-saturated 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol.

$R_{\rm ct}$ (k Ω)	k^0 or k_{app}^0
,	(cm s ^{−1} × 10 ⁵) ^[a]
23	5.7
54	2.5
36	3.7
874	0.2
33	4.0
	R _{ct} (kΩ) 23 54 36 874 33

 $^{[a]}k^0$ (or k_{app}^0) values were obtained from R_{ct} as described in references [1-4].

Figure S22. ¹H NMR spectrum for aliquots of 0.1 M KH₂PO₄ (pH 6.5) (A), 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol (B), and 0.1 M KH₂PO₄ (pH 6.5) containing 20 mM acetaldehyde (C). Insets depict the range comprising the hydrogen in acetaldehyde and the hydrated form of acetaldehyde.

Figure S23. ¹H NMR spectra for aliquots of 0.1 M KH₂PO₄ (pH 6.5) containing 100 mM ethanol (A) after the GC/PM-ADH-NAD⁺/Nafion electrode was subjected to ω = 200 rpm for 3 h followed by 5 HCV scans, (B) after the GC/ADH/Nafion electrode underwent 30 HCV scans, (C) after the GC/PM-ADH/Nafion electrode underwent 30 HCV scans, and (D) after the GC/PM-ADH-NAD⁺/Nafion electrode underwent 3 hours under ω = 200 rpm.

REFERENCES

[1] S. R. Santos and G. Maia, *Electrochim. Acta* 2012, **71**, 116–122.

[2] A. H. H. Tanji, F. Lima, S. R. Santos and G. Maia, *J. Phys. Chem. C* 2012, **116**, 18857–18864.

[3] L. B. Venarusso, K. Tammeveski and G. Maia, *Electrochim. Acta* 2011, **56**, 8926–8933.

[4] F. Lima, G. V. Fortunato and G. Maia, RSC Advances 2013, 3, 9550–9560.