Supporting Information

An ionic aqueous pseudocapacitor system: electroactive ions in both salt-electrode and redox-electrolyte

Kunfeng Chen, Shuyan Song*, and Dongfeng Xue*

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China E-mail: songsy@ciac.ac.cn; dongfeng@ciac.ac.cn

Experimental section

Electrode preparation and electrochemical measurement. Slurries containing chloride salts (FeCl₃·6H₂O, CoCl₂·6H₂O, NiCl₂·6H₂O, or CuCl₂·2H₂O), carbon black, and poly(vinylidene fluoride) (PVDF) in a weight ratio of 70:20:10 were prepared by mixing these materials and then dispersing them in N-methyl-2-pyrrolidone (NMP). Electrodes were prepared by spreading the slurry on a nickel foam current collector with an area of 1×1 cm². The electrode was dried at 80 °C for 24h and finally pressed at 10 MPa. The total weight of active component in an electrode is fixed to be approximately 3 mg.

Electrolytes are 2M KOH or mixed redox-electrolyte including 2 M KOH and different concentrations of $K_3Fe(CN)_6$ (0.05, 0.1, 0.2, and 0.3 M). All electrochemical experiments were carried out using a classical three-electrode cell configuration with the saturated calomel electrode (SCE) as the reference electrode, and Pt wire as a counter electrode. The cyclic voltammograms (CV), and galvanostatic charge-discharge measurements were carried out by an electrochemical workstation (CHI 660D). The applied potential ranges were -0.1-0.45 V for CoCl₂ electrode, 0-0.45 V for NiCl₂ and CuCl₂ electrodes, 0-0.4 V for FeCl₃ electrode.

Characterization. The spectral studies of aqueous electrolyte specimens were carried out at room temperature by ATR-IR technique (Thermo Nexus 6700) with an ATR cell. The internal reflection element (IRE) was diamond crystal. A Nicolet 20DXB FT-IR spectrometer was utilized to conduct the measurements of all electrolyte in the spectral range 4000–500 cm⁻¹.

Figure S1 The global view of Fourier transform infrared spectroscopy of $K_3Fe(CN)_6$ and KOH aqueous electrolyte. Infrared spectroscopy of mixing electrolyte including 0.3 M $K_3Fe(CN)_6$ and 2 M KOH after (a) and before (b) electrochemical test and (c) 0.3 M $K_4Fe(CN)_6$, (d) 0.3M $K_3Fe(CN)_6$, and (e) 2M KOH aqueous solution. The infrared stretching frequency of Fe^{III}-CN was found to be 2114 cm⁻¹, while the stretching frequency of Fe^{III}-CN was 2039 cm⁻¹.

Current density (mA/cm ²)	Area capacitance (mF/cm ²) Concentration of K ₃ Fe(CN) ₆ (mol/L)			
	30	4093	7680	14133
40	3298	6160	10651	
50	2456	4800	8167	

Table S1 Area capacitance of $CuCl_2$ electrode vs. concentration of $K_3Fe(CN)_6$ and current

density

Current density (mA/cm ²)	Area capacitance (mF/cm ²) Concentration of K ₃ Fe(CN) ₆ (mol/L)			
	30	2947	6680	9133
40	2711	6196	8018	
50	2467	5689	7089	

Table S2 Area capacitance of NiCl₂ electrode vs. concentration of $K_3Fe(CN)_6$ and current

density

density					
Current density	Area capacitance (mF/cm ²)				
(mA/cm ²)	Concentration of K ₃ Fe(CN) ₆ (mol/L)				
	0	0.1	0.3		
30	1410	5010	8273		
40	360	2770	5590		
50	71	1250	3338		

Table S3 Area capacitance of $FeCl_3$ electrode vs. concentration of $K_3Fe(CN)_6$ and current