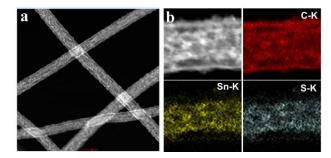
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting information

A Novel SnS₂@Graphene Nanocable Network for High-Performance Lithium Storage


Debin Kong, a,b,c Haiyong He, b Qi Song, b Bin Wang, b Quan-Hong Yang ${}^{a,c}*$ and Linjie Zhi ${}^{a,b,c}*$

[*]

^aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China) ^bNational Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190 (China)

^cThe Synergistic Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300072 (China)

E-mail: zhilj@nanoctr.cn, qhyangcn@tju.edu.cn

Figure S1. (a) Dark field transmission electron microscopy image. (b) Carbon, Tin and sulfur elemental mapping of a selected area of an individual SnS₂@GT. Scale bar, 100 nm.

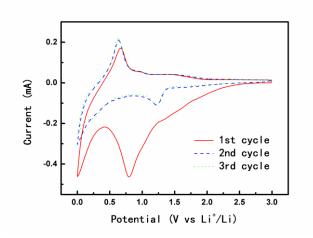
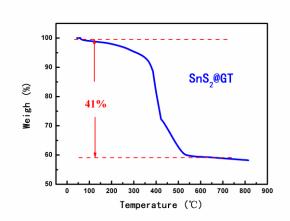



Figure S2. Cyclic voltammetry (CV) behavior of SnS₂@GT.

Figure S3. TGA of as-prepared $SnS_2@GT$. The SnS_2 content estimated from the thermal analysis was ca. 71.6 wt % (Note: SnS_2 had been oxidized into SnO_2). The analysis was taken in air using a heating rate of 10°C min⁻¹. The weight loss from room temperature to 200°C was due to the removal of physisorbed and chemisorbed water.

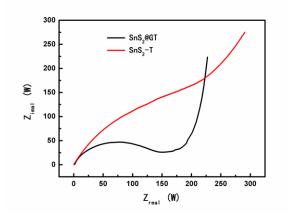


Figure S4. EIS of SnS₂@GT and SnS₂-T