Supplementary Information

Structural optimization of super-gelators derived from naturally-occurring mannose and their morphological diversity

Fumiyasu Ono,*a Hisayuki Watanabe^{a,b} and Seiji Shinkai^c

^aAdvanced Materials Research Labolatory, Collaborative Reseach Division, Art, Science and Technology Center for Cooperative Reseach, Kyushu University, 4-1 Kyudai-Shinmachi, Nishi-ku, Fukuoka-city, Fukuoka 819-0388, Japan,

^bNissan Chemical Industries, Ltd., 10-1 Tsuboi-Nishi 2-chome, Funabashi-city, Chiba 274-8507, Japan ^cInstitute of Systems, Information Technologies and Nanotechnologies (ISIT), 4-1 Kyudai-Shinmachi, Nishi-ku, Fukuoka-city, Fukuoka 819-0388, Japan

List of Contents

1. General information 2. Synthesis 3. Pictures of gelation tests	S1 S2 S7		
		4. FE-SEM and TEM images of xerogels	S 11
		5. AFM images of dried toluene solution for 2 and 6 at 0.02 wt%	S15
6. ¹ H and ¹³ C NMR spectra of mannose derivatives	S16		

1. General information

¹H NMR spectra are recorded either on JEOL JNM-ECA 600 (600 MHz for ¹H) spectrometer. Chemical shifts are reported in parts per million downfield (δ) relative to internal tetramethylsilane (TMS, $\delta_{\rm H}$ 0.00). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), intergration, and assignment. ¹³C NMR spectra are recorded either on JEOL JNM-ECA 600 (150 MHz for ¹³C) spectrometer with complete proton decoupling. Chemical shifts are reported in perts per million downfield (δ) relative to solvent as the internal standard (CDCl₃, $\delta_{\rm C}$ 77.0). EI and FAB mass spectra were measured on JEOL JMS-700. TEM imaging was performed on a JEOL JEM-2010HCKM at the Reseach Laboratory for High Voltage Electron Microscopy, Kyushu University. FE-SEM imaging was performed on a Hitachi SU-8000 at the Center of Advanced Instrumental Analysis, Kyushu University. AFM was performed on

an SII NanoTechnology Inc. Nanonavi/Nanocute (now Hitachi High-Tech Science Corp.). Frash chromatography was performed on a Shoko Scientific Co., Ltd. Purif-espoir2 and Pulif-Pack SI-60. Merck precoated TLC plates (silica gel 60 F254) were used. Anhydrous DMF and MeOH were purchased from Wako Pure Chemical.

2. Synthesis

2-1. Synthesis of 4-alkoxybenzaldehydes

4-(3-butenyloxy)benzaldehyde S1

A mixture of 4-hydroxybenzaldehyde (4.9 g, 40 mmol), 4-bromo-1-butene (13.5 g, 100 mmol) and potassium carbonate (8.3 g, 60 mmol) in anhydrous DMF (80 mL) were stirred for 6

h at 80 °C. The reaction mixture cooled to rt and filtered. The filtrate was concentrated under reduced pressure. To the residue was added brine and extracted with ethyl acetate. The extract was washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂; the hexane/ethyl acetate ratio varying from 90/10, vol/vol) to give the desired product (5.9 g, 84%) as clear oil. $\delta_{\rm H}$ (600 MHz, CDCl₃): 9.88 (1H, s), 7.85–7.81 (2H, m), 7.02–6.95 (2H, m), 5.95–5.86 (1H, m), 5.22–5.12 (2H, m), 4.15–4.05 (2H, m), 2.61–2.55 (2H, m).

4-(2-Ethylhexyloxy)benzaldehyde S2

A mixture of 4-hydroxybenzaldehyde (4.9 g, 40 mmol), 2-ethylhexylbromide (9.7 g, 50 mmol) and potassium carbonate (8.3 g, 60 mmol) in anhydrous DMF (80 mL) were stirred for 3 h at 80 °C. The reaction mixture cooled

to rt and filtered. The filtrate was concentrated under reduced pressure. To the residue was added brine and extracted with ethyl acetate. The extract was washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂; the hexane/ethyl acetate ratio varying from 90/10, vol/vol) to give the desired product (8.9 g, 95%) as clear oil. $\delta_{\rm H}$ (600 MHz, CDCl₃): 9.88 (1H, s), 7.85–7.81 (2H, m), 7.02–6.98 (2H, m), 3.94–3.91 (2H, m), 1.78–1.73 (1H, m), 1.53–1.30 (8H, m), 0.95–0.85 (6H, m).

4-cyclohexyloxybenzaldehyde

A mixture of 4-hydroxybenzaldehyde (10.0 g, 82 mmol), bromocyclohexane (15.0 mL, 122 mmol), tetrabutylammonmium iodide (0.25 g, 0.67 mmol) and potassium carbonate (34.0 g, 246 mmol) in anhydrous DMF (80 mL) were stirred for 12 h at 150 °C. The reaction mixture cooled to rt and filtered. The filtrate was concentrated under reduced pressure. To the residue was added brine and extracted with ethyl acetate. The extract was washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂; the hexane/ethyl acetate ratio varying from 90/10, vol/vol) to give the desired product (2.0 g, 12%) as clear oil. $\delta_{\rm H}$ (600 MHz, CDCl₃): 9.85 (1H, s), 7.83–7.79 (2H, m), 7.00–6.96 (2H, m), 4.41–4.35 (1H, m), 2.05–1.98 (2H, m), 1.87–1.79 (2H, m), 1.63–1.50 (3H, m), 1.45–1.29 (3H, m).

2-2. Synthesis of mannose derivatives

a) (MeO)₃CH, Cu(BF₄)₂·xH₂O(cat), MeOH, 1 h, RT, up to quant; b) Methyl- α -D-mannopyranoside, p-TsOH·H₂O(cat), DMF, 2 h, RT, under reduced pressure

Figure S1. Synthesis scheme of mannose derivatives

General procedure: Copper(II) tetrafluoroborate (0.2 mmol) was added to a mixture of 4-alkoxybenzaldehyde (20 mmol) and trimethyl orthoformate (40 mmol) in anhydrous methanol (8 mL) under nitrogen atmosphere. The reaction mixture was stirred for 1 h at RT. After 1 h, the reaction mixture was quenched with saturated NaHCO₃ and extracted with ethyl acetate. The extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The obtained clear oil or pale yellow oil was used in the next reaction without further purification.

A solution of crude dimethylacetal in DMF (10 mL) was added dropwise to a suspension of methyl- α -D-mannopyranoside (22 mmol) and *p*-toluenesulfonic acid (0.5 mmol) in anhydrous DMF (20 mL) under nitrogen atmosphere. The reaction mixture was first stirred for 10 min at RT and then for 2 h under reduced pressure at RT. After 2 h, the reaction mixture was quenched with saturated NaHCO₃ and extracted with ethyl acetate. The extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (SiO₂; the hexane/ethyl acetate ratio varying from 70/30 to 50/50, vol/vol). The desired product was then obtained.

Methyl-4,6-O(4-methoxybenzylidene)- α -D-mannopyranoside (1)

White solid, yield 55%

 $\delta_{\rm H}$ (600 MHz, CDCl₃): 7.39 (2H, d, J = 8.8 Hz), 6.88 (2H, d, J = 8.8 Hz), 5.52 (1H, s), 4.75 (1H, s), 4.30–4.22 (1H, m),

4.07–4.00 (2H, m), 3.93–3.86 (1H, m), 3.85–3.76 (5H, m), 3.40 (3H, s), 2.70–2.63 (2H, br). δc (150 MHz, CDCl₃): 160.26, 129.70, 127.57, 113.72, 102.21, 101.22, 78.82, 70.82, 68.81, 68.69, 62.87, 55.30, 55.09. HRMS (EI+): m/z calc'd for C₁₅H₂₀O₇ (M+): 312.1209; found: 312.1202.

Methyl-4,6-O(4-butoxybenzylidene)-a-D-mannopyranoside (2)

White solid, yield 45% δ_H (600 MHz, CDCl₃): 7.40 (2H, d, J = 8.5 Hz), 6.89

 $\underbrace{OMe}_{(2H, d, J = 8.8 \text{ Hz}), 5.52 (1H, s), 4.77 (1H, s),}_{4.31-4.22 (1H, m), 4.10-4.02 (2H, m), 3.96 (2H, t, J = 6.6 \text{ Hz}), 3.93-3.86 (1H, m),}_{3.85-3.76 (2H, m), 3.40 (3H, s), 2.66-2.60 (2H, br), 1.80-1.71 (2H, m), 1.53-1.43 (2H, m),}_{0.97 (3H, t, J = 7.6 \text{ Hz}). \delta_{\text{C}} (150 \text{ MHz}, \text{ CDCl}_3): 159.86, 129.46, 127.51, 114.32, 102.29,}_{101.21, 78.81, 70.82, 68.82, 68.73, 67.75, 62.89, 55.10, 31.23, 19.20, 13.82. \text{ HRMS (EI+):}}_{\text{m/z calc'd for C}_{18}\text{H}_{26}\text{O}_7 (M+): 354.1679; \text{found: } 354.1682.}$

Methyl-4,6-O(4-hexyloxybenzylidene)-a-D-mannopyranoside (3)

White solid, yield 49%

 $\delta_{\rm H}$ (600 MHz, CDCl₃): 7.39 (2H, d, J = 8.8 Hz), 6.88 (2H, d, J = 8.6 Hz), 5.52 (1H, s), 4.76 (1H, s),

4.30–4.22 (1H, m), 4.09–4.02 (2H, m), 3.95 (2H, t, J = 6.5 Hz), 3.92–3.86 (1H, m), 3.84–3.76 (2H, m), 3.40 (3H, s), 2.64–2.59 (2H, br), 1.80–1.73 (2H, m), 1.48–1.40 (2H, m), 1.38–1.29 (4H, m), 0.93–0.86 (3H, m). $\delta_{\rm C}$ (150 MHz, CDCl₃): 159.86, 129.45, 127.51, 114.32, 102.29, 101.21, 78.81, 70.82, 68.82, 68.72, 68.08, 62.87, 55.10, 31.56, 29.16, 25.67, 22.59, 14.02. HRMS (EI+): m/z calc'd for C₂₀H₃₀O₇ (M+): 382.1992; found: 382.1997.

Methyl-4,6-O-(4-octyloxybenzylidene)-a-D-mannopyranoside (4)

White solid, yield 48% δ_H (600 MHz, CDCl₃): 7.39 (2H, d, J = 8.6 Hz), 6.88 (2H, d, J = 8.6 Hz), 5.52 (1H, s), 4.76 (1H, s),

4.30–4.23 (1H, m), 4.08–4.02 (2H, m), 3.95 (2H, t, J = 6.5 Hz), 3.92–3.86 (1H, m), 3.85–3.76 (2H, m), 3.40 (3H, s), 2.65–2.59 (2H, br), 1.80–1.73 (2H, m), 1.47–1.40 (2H, m), 1.37–1.22 (8H, m), 0.92–0.85 (3H, m). $\delta_{\rm C}$ (150 MHz, CDCl₃): 159.86, 129.45, 127.51,

114.32, 102.29, 101.22, 78.81, 70.82, 68.82, 68.73, 68.09, 62.87, 55.10, 31.80, 29.34, 29.22, 29.19, 26.00, 22.64, 14.08. HRMS (EI+): m/z calc'd for C₂₂H₃₄O₇ (M+): 410.2305; found: 410.2308.

Methyl-4,6-O(4-decyloxybenzylidene)- α -D-mannopyranoside (5)

White solid, yield 43% $\delta_{\rm H}$ (600 MHz, CDCl₃): 7.39 (2H, d, J = 8.8 Hz), 6.89 (2H, d, J = 8.8 Hz), 5.52 (1H, s), 4.76 (1H, s),

4.31–4.22 (1H, m), 4.09–4.01 (2H, m), 3.98–3.86 (3H, m), 3.85–3.76 (2H, m), 3.40 (3H, s), 2.66–2.60 (2H, m), 1.81–1.72 (2H, m), 1.48–1.38 (2H, m), 1.38–1.20 (12H, m), 0.88 (3H, d, J = 6.9 Hz). $\delta_{\rm C}$ (150 MHz, CDCl₃): 159.86, 129.45, 127.51, 114.32, 102.29, 101.21, 78.81, 70.82, 68.82, 68.73, 68.09, 62.87, 55.10, 31.88, 29.56, 29.54, 29.38, 29.30, 29.19, 26.00, 22.66, 14.10. HRMS (EI+): m/z calc'd for C₂₄H₃₈O₇ (M+): 438.2618; found: 438.2615.

Methyl-4,6-O(4-dodecyloxybenzylidene)- α -D-mannopyranoside (6)

White solid, yield 41%

 $\delta_{\rm H}$ (600 MHz, CDCl₃): 7.39 (2H, d, J = 8.8 Hz), 6.88 (2H, d, J = 8.5 Hz), 5.52 (1H, s), 4.76 (1H, s),

4.30–4.21 (1H, m), 4.08–4.01 (2H, m), 3.95 (2H, t, J = 6.6 Hz), 3.92–3.85 (1H, m), 3.84–3.75 (2H, m), 3.40 (3H, s), 2.69–2.62 (2H, m), 1.81–1.72 (2H, m), 1.48–1.39 (2H, m), 1.38–1.20 (16H, m), 0.88 (3H, d, J = 6.9 Hz). $\delta_{\rm C}$ (150 MHz, CDCl₃): 159.85, 129.44, 127.51, 114.31, 102.28, 101.21, 78.81, 70.82, 68.81, 68.70, 68.08, 62.87, 55.08, 31.90, 29.63, 29.61, 29.58, 29.56, 29.37, 29.33, 29.18, 25.99, 22.67, 14.09. HRMS (EI+): m/z calc'd for C₂₆H₄₂O₇ (M+): 466.2931; found: 466.2923.

Methyl-4,6-O-(4-(3-butenyl)oxybenzylidene)-a-D-mannopyranoside (7)

White solid, yield 45%

 $\delta_{\rm H}$ (600 MHz, CDCl₃): 7.40 (2H, d, J = 8.8 Hz), 6.89 (2H, d, J = 8.5 Hz), 5.94–5.84 (1H, m), 5.52 (1H, s),

5.20–5.13 (1H, m), 5.13–5.08 (1H, m), 4.76 (1H, s), 4.31–4.22 (1H, m), 4.08–3.98 (4H, m), 3.93–3.86 (1H, m), 3.85–3.76 (2H, m), 3.40 (3H, s), 2.68–2.62 (2H, m), 2.57–2.50 (2H, m). $\delta_{\rm C}$ (150 MHz, CDCl₃): 159.57, 134.29, 129.68, 127.56, 117.06, 114.37, 102.21, 101.23, 78.81, 70.82, 68.79, 68.64, 67.24, 62.88, 55.06, 33.53. HRMS (EI+): m/z calc'd for $C_{18}H_{24}O_7$ (M+): 352.1522; found: 352.1524.

Methyl-4,6-O-(4-(2-ethylhexyl)oxybenzylidene)-a-D-mannopyranoside (8)

White solid, yield 40%

δ_H (600 MHz, CDCl₃): 7.39 (2H, d, J = 8.8 Hz),
6.88 (2H, d, J = 8.5 Hz), 5.50 (1H, s), 4.70 (1H, s),
4.28–4.20 (1H, m), 4.04–3.94 (2H, m), 3.91–3.73

(5H, m), 3.38 (3H, s), 2.98–2.83 (2H, m), 1.74–1.66 (1H, m), 1.54–1.24 (8H, m), 0.95–0.84 (6H, m). δ_C (150 MHz, CDCl₃): 160.04, 129.42, 127.50, 114.26, 102.18, 101.38, 78.73, 70.79, 70.58, 68.71, 68.50, 63.04, 54.89, 39.28, 30.45, 29.00, 23.80, 22.95, 13.97, 11.00. HRMS (EI+): m/z calc'd for C₂₂H₃₄O₇ (M+): 410.2305; found: 410.2304.

Methyl-4,6-O(4-cyclohexyloxybenzylidene)-a-D-mannopyranoside (9)

White solid, yield 31%

 $\delta_{\rm H}$ (600 MHz, CDCl₃): 7.38 (2H, d, J = 8.6 Hz), 6.89 (2H, d, J = 8.8 Hz), 5.50 (1H, s), 4.74 (1H, d, J =

1.2 Hz), 4.28–4.21 (2H, m), 4.06–3.99 (2H, m), 3.91–3.85 (1H, m), 3.83–3.75 (2H, m), 3.39 (3H, s), 2.76 (1H, d, J = 3.4 Hz), 2.73 (1H, d, J = 2.2 Hz), 2.00–1.92 (2H, m), 1.82–1.74 (2H, m), 1.60–1.46 (3H, m), 1.40–1.25 (3H, m). $\delta_{\rm C}$ (150 MHz, CDCl₃): 158.50, 129.38, 127.52, 115.80, 102.29, 101.22, 78.80, 75.35, 70.81, 68.79, 68.65, 62.88, 55.07, 31.65, 25.57, 23.66. HRMS (EI+): m/z calc'd for C₂₀H₂₈O₇ (M+): 380.1835; found: 380.1832.

Methyl-4,6-O(3,4-dimethoxybenzylidene)- α -D-mannopyranoside (10)

White solid, yield 32%

δ_H (600 MHz, CDCl₃): 7.06–7.01 (2H, m), 6.86 (1H, d, *J* = 8.8 Hz), 5.53 (1H, s), 4.77 (1H, s), 4.32–4.24 (1H, m),

4.11–4.03 (2H, m), 3.94–3.78 (9H, m), 3.41 (3H, s), 2.72–2.64 (2H, br). $\delta_{\rm C}$ (150 MHz, CDCl₃): 149.74, 148.95, 129.92, 119.02, 110.71, 109.10, 102.34, 101.24, 78.91, 70.84, 68.81, 68.62, 62.85, 55.93, 55.87, 55.09. HRMS (EI+): m/z calc'd for C₁₆H₂₂O₈ (M+): 342.1315; found: 342.1317.

References

- S1 L. Tauk, A-P. Schroder, G. Decher and N. Giuseppone, *Nature Chem.*, 2009, **1**, 649–656.
- S2 X. Chen, C-Y. Liu, T-H. Jeu, S-A. Chen and S. Holdcroft, *Chem. Mater.*, 2007, 19, 5194–5199.

3. Pictures of gelation test

Figure S3-1. Gels of octane (0.1), cyclohexane (0.25), squalane (0.05), squalene (0.1), toluene (0.5), SH245 (0.05), olive oil (0.5) and IPM (0.5) formed from 1. (Numbers in parentheses are CGC values (wt%).)

Figure S3-2. Gels of octane (0.05), cyclohexane (0.05), squalane (0.025), squalene (0.05), toluene (0.5), SH245 (0.05), olive oil (0.5), IPM (0.5), ethylene glycol (2.0), glycerol (2.0), water (0.1), DMSO/H₂O (50/50, vol/vol)) (0.5), DMSO/H₂O (25/75, vol/vol) (0.1), EtOH/H₂O (50/50, vol/vol)) (1.0) and EtOH/H₂O (25/75, vol/vol)) (0.1) formed from **2**. (Numbers in parentheses are CGC values (wt%).)

Figure S3-3. Gels of octane (0.1), cyclohexane (0.05), squalane (0.05), squalene (0.1), toluene (1.0), SH245 (0.05), olive oil (1.0), IPM (1.0), ethylene glycol (2.0), DMSO/H₂O (75/25, vol/vol)) (2.0), DMSO/H₂O (50/50, vol/vol)) (0.1), DMSO/H₂O (25/75, vol/vol) (0.1), EtOH/H₂O (50/50, vol/vol)) (0.5) and EtOH/H₂O (25/75, vol/vol)) (0.1) formed from **3**. (Numbers in parentheses are CGC values (wt%).)

Figure S3-4. Gels of octane (0.1), cyclohexane (0.1), squalane (0.05), squalene (0.25), toluene (1.0), SH245 (0.1), olive oil (1.0), IPM (1.0), ethylene glycol (1.0), DMSO/H₂O (75/25, vol/vol)) (1.0), DMSO/H₂O (50/50, vol/vol)) (0.05), DMSO/H₂O (25/75, vol/vol) (0.25), EtOH/H₂O (50/50, vol/vol)) (0.5) and EtOH/H₂O (25/75, vol/vol)) (0.05) formed from **4**. (Numbers in parentheses are CGC values (wt%).)

Figure S3-5. Gels of octane (0.1), cyclohexane (0.1), squalane (0.05), squalene (0.25), toluene (2.0), SH245 (0.25), olive oil (1.0), IPM (1.0), ethylene glycol (0.5), DMSO/H₂O (75/25, vol/vol)) (0.5), DMSO/H₂O (50/50, vol/vol)) (0.1), EtOH/H₂O (75/25, vol/vol)) (2.0) and EtOH/H₂O (50/50, vol/vol)) (0.25) formed from **5**. (Numbers in parentheses are CGC values (wt%).)

Figure S3-6. Gels of octane (0.25), cyclohexane (0.1), squalane (0.1), squalene (0.25), toluene (2.0), SH245 (0.5), olive oil (1.0), IPM (1.0), ethylene glycol (0.25), DMSO/H₂O (75/25, vol/vol)) (0.5), DMSO/H₂O (50/50, vol/vol)) (0.25), EtOH/H₂O (75/25, vol/vol)) (2.0) and EtOH/H₂O (50/50, vol/vol)) (0.25) formed from **6**. (Numbers in parentheses are CGC values (wt%).)

Figure S3-7. Gels of octane (0.1), cyclohexane (0.1), squalane (0.05), squalene (0.1), toluene (0.5), SH245 (0.05), olive oil (0.5), IPM (0.5), water (0.1), DMSO/H₂O (50/50, vol/vol)) (1.0), DMSO/H₂O (25/75, vol/vol)) (0.25), EtOH/H₂O (50/50, vol/vol)) (2.0) and EtOH/H₂O (25/75, vol/vol)) (0.25) formed from **7**. (Numbers in parentheses are CGC values (wt%).)

Figure S3-8. Gels of octane (0.05), cyclohexane (0.25), squalane (0.1), squalene (0.25) and SH245 (0.1) formed from **8**. (Numbers in parentheses are CGC values (wt%).)

4. FE-SEM and TEM images of xerogels

Figure S4-1. FE-SEM images of xerogel prepared from the cyclohexane gel of 2.

Figure S4-2. FE-SEM images of xerogel prepared from the toluene gel of 2.

Figure S4-3. TEM images of the dried sample prepared from the toluene gel of 2.

Figure S4-4. FE-SEM images of xerogel prepared from the EtOH/H₂O (50/50, vol/vol) gel of 2.

Figure S4-5. TEM images of the dried sample prepared from the EtOH/H₂O (50/50, vol/vol) gel of 2.

Figure S4-6. FE-SEM images of xerogel prepared from the hydrogel of 2.

Figure S4-7. TEM images of the dried sample prepared from hydrogel of 2.

Figure S4-8. FE-SEM images of xerogel prepared from the cyclohexane gel of 6.

Figure S4-9. FE-SEM images of xerogel prepared from the toluene gel of 6.

Figure S4-10. TEM images of the dried sample prepared from toluene gel of 6.

Figure S4-11. FE-SEM images of xerogel prepared from the EtOH/H₂O (50/50, vol/vol) gel of **6**.

Figure S4-12. TEM images of the dried sample prepared from the EtOH/H₂O (50/50, vol/vol) gel of **6**.

- 1.291E-01 [nm2] 710777小表示 Raw Ξ 4.177E-10 1.922E+01 D.C. 2.960E+01 [rm] Z2[nm] 高低差 [nm] 距離[nm] Z1[nm] 角度差 115.82 6.05 2.56 3.434545 2.70 2.06 164.07 5.85 5.71 2,34 1509774 106.16 1.8 2.28 5.94 3 42547 106.16 [un] 2.578453 2.36 86.96 2.4 中心線平均相ざ 最大高低差 1.132E+00 nm 6.600E+00 nm 8.14 4902E+03 1225E+03 1736E+00 則定長さ nn 7.477值 平均倾斜角 nm [mm] 77 (小名: 20mlk_c4brman_tokene. 3/2+1 . C4BnMen コルト2 : Toluene 3/21-3 : cast 1.80 4940.24 [mm]
- 5. AFM images of dried toluene solution for 2 and 6 at 0.02 wt%

Figure S5-1. AFM image and the slice image of dried toluene solution of **2** at 0.02 wt% on HOPG.

Figure S5-2. AFM image and the slice image of dried toluene solution of **6** at 0.02 wt% on HOPG.

6. ¹H and ¹³C NMR spectra of mannose derivatives

