> Electronic Supplementary Information (ESI) for RSC Advances This journal is (c) The Royal Society of Chemistry 2014

Electronic Supplementary Information

V₂O₅ nanowires as robust and efficient peroxidase

mimic at high temperature in aqueous media

Jianxin Xie,^{ab} Xiaodan Zhang,^a Huan Jiang,^a Sha Wang,^{ac} Hong Liu,^{*c} Yuming Huang^{*a}

^a Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

^bCollege of Resources and Environment, Yuxi Normal University, Yunnan 653100, PR China

^cChongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, PR China.

Materials and methods

Reagents and materials

All chemicals and reagents were of analytical grade and used without further purification, and ultra pure water was used throughout. TMB, o-phenylenediamine (OPD), 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) and glucose oxidase (GOx, EC 1.1.3.4. 47, 200 U mg⁻¹) were purchased from Sigma-Aldrich (Shanghai, China). A 0.01 M luminol was prepared by dissolving luminol (Merck, Germany) in 0.01 M NaOH solution, and the diluted solutions of luminol were prepared as needed with 0.2 M Na₂CO₃. H₂O₂, glucose, NH₄VO₃, P123 (EO₂₀PO₇₀EO₂₀), H₂O₂, NaOH, HCl, Na₂CO₃ and NaHCO₃ were obtained from Chongqing Chemical Reagents Company (Chongqing, China). All glassware was soaked in 10% nitric acid and thoroughly rinsed before use.

Apparatus

UV-visible spectroscopy measurements were performed on a Shimadzu UV-2450 spectrophotometer (Suzhou, China). The CL spectra were recorded under the fluorescence scanning model by turning off the excitation source with a Hitachi F-7000 spectrofluorimeter (Tokyo, Japan). CL measurements were performed on an IFFL-D MCFL-A flow injection CL Analyzer (Ruike Electronic Equipment Company Ltd., Xi'an, China). The powder X-ray diffraction (XRD) patterns of the as-prepared products were performed on a XD-3 X-ray diffractometer (PuXi, Beijing, China) under the conditions of nickel filtered CuK α radiation (λ =0.15406 nm) at current of 20 mA and a voltage of 36 KV. The scanning rate was 4° min⁻¹ in the angular range of 5°–55° (2 θ). FT-IR spectra were recorded on a Nicolet 170SX instrument (Madison, WI, USA) in the transmission mode using KBr pellets to prepare the sample. The ESR spectra were obtained on a Bruker ESR 300E with Microwave Bridge (receiver gain, 1×10^5 ; modulation amplitude, 2 Gauss; microwave power, 10 mW; modulation frequency, 100 kHz). The scanning transmission electron microscopy (SEM) images were taken on Hitachi model S-4800 field emission scanning electron microscope (Hitachi, Japan), with an accelerating voltage of 20 kV. The size of the prepared V₂O₅ was characterized by a model Tecnai G2 20 TEM operating at 200 kV accelerated voltage.

Synthesis of V₂O₅ Nanowires, V₂O₅ Nanorods, V₂O₅ Nanoparticles, V₂O₅ Nanosheets, V₂O₅ Nanobelts and V₂O₅ Spheres

 V_2O_5 nanowires were prepared by the hydrothermal treatment of NH₄VO₃ as described elsewhere¹ with a slight modification. Briefly, 0.75 g NH₄VO₃ and 1.25 g of P123 were dissolved in 75 mL of water containing 3.75 mL of 2 M HCl. The mixture was stirred at room temperature for 7 h, and then transferred into 100 mL Teflon-lined autoclave. After the autoclave was sealed and maintained in an electric oven at 120 °C for 24 h, it was cooled down to room temperature. The product was rinsed with water and acetone several times and dried at 80 °C for 12 h. The as-prepared nanowires could be well-dispersed in aqueous buffer.

 V_2O_5 nanorods were synthesized by a facile thermal-decomposition of vanadyl oxalate by reacting micro-sized V_2O_5 with oxalic acid.² Briefly, 1.2 g V_2O_5 and 1.83 g $H_2C_2O_4$ were added to 30 mL of the distilled water under stirring at room temperature until the color of the solution changed from yellow to blue. The obtained solution was dried at 80 °C and then calcined at 400 °C for 2 h.

 V_2O_5 nanoparticles were prepared by using a surfactant-mediated method.³ The first micelle solution was constituted of 6 g CTAB, 10.8 g 1-hexanol and 3 g water which contained 0.2 g ammonium metavanadate, while the second micelle solution contained 6 g CTAB, 10.8 g 1-hexanol 3.1 g water and 0.1 g sulfuric acid. After stirring and getting clear solutions, the second micelle solution was added to the first micelle solution. The mixed micelle solution was stirred at 50 °C for 3 h and then left for two days at room temperature to allow precipitation. The precipitates were washed with deionized water and ethanol for several times and then heated at 400 °C for 2 h in air.

 V_2O_5 nanosheets were prepared via a simple and direct exfoliation of bulk V2O5 crystals in formamide solvent.⁴ Briefly, 50 mg V_2O_5 powder was added into 50 mL of formamide solution, then the mixture was shaken overnight to suspend the powder. After the resulting suspension was then sonicated at room temperature for 3 days, the exfoliated V_2O_5 nanosheets were isolated from the upper solution via centrifugation and washed with ethanol for several times and then dried overnight at 70 °C.

 V_2O_5 nanobelts were synthesized based on method by Liu et al.⁵ Briefly, 0.234 g ammonium metavanadate was dissolved in 20 mL of the deionized water to form a light yellow clear solution. Then, the concentrated nitric acid was added dropwisely to adjust the pH value of the solution to about 2.0 to 3.0 to obtain a clear orange solution. Then the resulting solution was transferred to autoclave with a Teflon liner and filled with deionized water up to 80% of the total volume. The autoclave was heated to 180 °C and kept for 24 h. After cooling down to room temperature naturally, the final product was washed with deionzed water and alcohol for several times and then dried at 60 °C under vacuum for 6 h.

References

- 1. Xiong, C.; Aliev, A. E.; Gnade, B.; Balkus, K. J. ACS Nano 2008, 2, 293–301.
- Pan, A.; Zhang, J.; Nie, Z.; Cao, G.; Arey, B. W.; Li, G.; Liang, S.; Liu, J. J. Mater. Chem. 2010, 20, 9193–9199.
- Asim, N.; Radiman, S.; Yarmo, M. A.; Golriz, M. S. B. *Micropor. Mesopor. Mater.* 2009, 120, 397–401.
- 4. Rui, X.; Lu, Z.; Yu, H.; Yang, D.; Hng, H. H.; Lim T. M.; Yan, Q. Nanoscale 2013, 5, 556–560.
- 5. Liu, J.; Wang, X.; Peng, Q.; Li, Y. Adv. Mater. 2005, 17, 764–767.

Electron Spin Resonance

175 μ L samples were prepared at room temperature by adding 5 μ L of 3% H₂O₂, 20 μ L of 0.2 M DMPO, 5 μ L of 1 × 10⁻⁴ M luminol and 95 μ L of water into a 1 mL plastic tube in the presence of 50 μ L of 200 μ g mL⁻¹ V₂O₅ nanowires. Then, the prepared sample solution was transferred to a quartz capillary tube and placed in the ESR cavity to obtain the ESR spectra. In this experiment, DMPO was used to trap the •OH radicals to form the DMPO/•OH spin adduct.

Procedures for CL detection and catalytic property assay

The CL intensity was measured by a flow injection CL system, in which two peristaltic pumps (30 r min⁻¹, Longfang Instrument Factory, Wenzhou, China) were used to deliver all solutions at a flow rate of 3 mL min⁻¹ (per tube). One was used for delivering V_2O_5 nanowires solution as catalyst and water carrier stream, and the other for delivering luminol solution and H_2O_2 solution (or sample solution). PTFE tubing (0.8 mm i. d.) was used to connect all components in the flow system. For CL measurement, flow

lines were inserted into the luminol solution, water, and H₂O₂ solution or sample solution, respectively. Then the pumps were started until a stable baseline was recorded. Injection of V₂O₅ nanowires solution was made by using an eight-way injection valve equipped with a 120 µL sample loop. The CL signal produced in the flow cell was monitored by a photomultiplier tube (PMT, operated at -600 V) of the Type IFFL-D MCFL-A flow injection CL Analyzer and was recorded by a computer equipped with a data acquisition interface. Data acquisition and treatment were performed with REMAX software running under Windows XP. The net CL intensity $\Delta I = I - I_0$ was used for the quantitative determination, where *I* and I_0 were the CL intensities of sample and blank solutions, respectively. At each target concentration, the injection was repeated for three times, and the average CL signal was obtained.

The performance of catalytic properties was evaluated by varying the concentrations of hydrogen peroxide at fixed concentration of V_2O_5 nanowires (18.2 mg/L) and luminol (8 μ M, pH 11.3). Catalytic properties can be evaluated by CL emission intensities versus concentration of hydrogen peroxide.

Procedure for temperature effect on catalytic activity of V₂O₅ nanowires

The effect of temperature on catalytic activity of V_2O_5 nanowires was evaluated by incubating the V_2O_5 nanowires solution (18.2 mg/L) in a water bath at a range of temperature from 5 to 70 °C (5, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, and 70 °C) for 10 min, then their activities were measured under the following conditions: 8 μ M luminol in 0.2 M buffer solution of Na₂CO₃-NaHCO₃ (pH 11.3), 1.0 μ M hydrogen peroxide. The catalytic activity of V₂O₅ nanowires at 65 °C was set to 100%.

Procedure for glucose detection in serum samples

For glucose analysis, first, the calibration curve for glucose was made by: (1) 0.1 mL of 1 mg mL⁻¹ GOx and 0.1 mL of glucose of different concentrations in 0.2 mL of 0.2 M NaAc buffer (pH 7.0) were incubated at 37 °C for 30 min (with final glucose concentration of 0.05–10 μ M); (2) the obtained mixture was diluted to 10 mL with ultra pure water, and used for standard curve measurement.

For glucose determination in serum, the samples were first treated by ultra filtration with 5 kDa Amicon cell at 3000 rpm for 10 min. The filtrate was diluted properly with 0.2 M NaAc buffer (pH 7.0). Then 0.1 mL of the diluted filtrate was

added into 0.1 mL of 1 mg mL⁻¹ GOx. The obtained mixture was incubated at 37 °C for 30 min and then used for the glucose measurement by the same way as glucose standard. In control experiments, buffer solution, 10 mM lactose and 10 mM fructose were used instead of 1.0 μ M glucose. The comparison study was carried out by an OneTouch Ultra glucose meter using glucose paper (Johnson and Johnson Medical Ltd., Shanghai, China).

Procedure for hydrogen peroxide analysis in real water samples

In this study, the rain water and lake water samples were selected for investigation. Rain water samples were collected from the roof of the located building near our lab. Lake water sample was taken from the ChongDe Lake located in Southwest University. Before experiment, all the water samples were filtered through 0.45 μ m micropore membrane prior to the preparation of samples by spiking the original samples with known amounts of H₂O₂ at three different concentrations (0.5, 1.0, and 5.0 μ M). EDTA as masking agent was added to water sample with final concentration of 1.0 μ M for eliminating the potential interference of metal ions. Each measurement was done in triplicate and the average was presented with standard deviation. The results summarized in Table S4 shows that the recoveries of H₂O₂ in the spiked lake water sample ranged from 90 to 108%, indicating the utility of the proposed method for the detection of H₂O₂.

Figure S1. (A) SEM image of V_2O_5 nanowires. (B) TEM image of V_2O_5 nanowires. (C) XRD pattern of V_2O_5 nanowires. (D) FT-IR spectra of V_2O_5 nanowires.

Supplementary Material (ESI) for RSC Advances This journal is (c) The Royal Society of Chemistry 2014

Figure S2. CL spectra for the luminol- H_2O_2 - V_2O_5 nanowires system. Reaction conditions: 10 μ M of luminol in 0.2 M Na₂CO₃ (pH 11.3), 10 μ M of H_2O_2 , 20 mg L⁻¹ of V_2O_5 nanowires.

Supplementary Material (ESI) for RSC Advances This journal is (c) The Royal Society of Chemistry 2014

Figure S3. (A) The UV-visible absorption spectra of 0.1 mM TMB with and without 5 mg L^{-1} of V_2O_5 nanowires in the absence and presence of 0.1 mM H_2O_2 for 30 min reaction at pH 4.0 and 35 °C. (B) The UV-visible absorption spectra of 0.1 mM ABTS with and without 5 mg L^{-1} of V_2O_5 nanowires in the absence and presence of 0.1 mM H_2O_2 for 30 min reaction at pH 4.0 and 35 °C. (C) The UV-visible absorption spectra of 1 mM OPD with and without 5 mg L^{-1} of V_2O_5 nanowires in the absence and presence of 1 mM H_2O_2 for 30 min reaction at pH 4.0 and 35 °C. (C) The UV-visible absorption spectra of 1 mM OPD with and without 5 mg L^{-1} of V_2O_5 nanowires in the absence and presence of 1 mM H_2O_2 for 30 min reaction at pH 4.0 and 35 °C. Insets: Images of color reaction of TMB/ABTS/OPD with and without V_2O_5 nanowires in the absence and presence of H_2O_2 .

Supplementary Material (ESI) for RSC Advances This journal is (c) The Royal Society of Chemistry 2014

Figure S4. Kinetic characteristics of the luminol- H_2O_2 CL system in the absence (a) and presence (b) of V_2O_5 nanowires. Inset: Amplified kinetic response of the luminol- H_2O_2 CL system. Reaction conditions: 8.0×10^{-6} M of luminol in 0.2 M Na₂CO₃ (pH 11.3), 1.0×10^{-6} M of H_2O_2 , 20 mg L⁻¹ of V_2O_5 nanowires.

Figure S5. Effect of solution pH on catalytic activity of V_2O_5 nanowires. Experimental conditions: 8 μ M luminol in 0.2 M Na₂CO₃ buffer (pH 11.3), 1.0 μ M hydrogen peroxide, 18.2 mg L⁻¹ V₂O₅. Error bars represent one standard deviation for three measurements.

Supplementary Material (ESI) for RSC Advances This journal is (c) The Royal Society of Chemistry 2014

Figure S6. Effect of the hydrogen peroxide concentration on catalytic activity of V_2O_5 nanowires. Experimental conditions: 8 μ M luminol in 0.2 M Na₂CO₃ buffer (pH 11.3), 18.2 mg L⁻¹ V₂O₅. Error bars represent one standard deviation for three measurements.

Figure S7. SEM image of (A) V₂O₅ nanowires; (B) V₂O₅ nanorod; (C) V₂O₅ nanoparticle; (D) V₂O₅ nanosheet and (E) V₂O₅ nanobelt.

Figure S8. Effect of different V_2O_5 structures on the catalytic activities. Experimental conditions: 8 μ M luminol in 0.2 M Na₂CO₃ buffer (pH 11.3), 1.0 μ M hydrogen peroxide, 18.2 mg L⁻¹ V₂O₅. Error bars represent one standard deviation for three measurements.

Figure S9. (A) Effect of pH of luminol solution. Reaction conditions: 1.0 μ M of luminol, 10 mg L⁻¹ of V₂O₅ nanowires, 1.0 μ M of H₂O₂; (B) Effect of luminol concentration. Reaction condition: pH 11.3, 10 mg L⁻¹ of V₂O₅ nanowires, 1.0 μ M of H₂O₂ (C) Effect of V₂O₅ nanowires concentration. Reaction conditions: 8.0 μ M of luminol in 0.2 M Na₂CO₃ (pH 11.3); 1.0 μ M of H₂O₂.

Figure S10. The response curves of H_2O_2 (A) and glucose (B).

3420 3440 3460 3480 3500 3520 3540 Magnetic Field (G)

Figure S11. Spin-trapping ESR spectra of \cdot OH free radicals in the systems of H₂O₂–luminol–DMPO and H₂O₂–luminol–DMPO–V₂O₅ nanowires. Conditions: 23 mM DMPO, 3 μ M luminol, 30 mM H₂O₂, and 57 mg L⁻¹ of V₂O₅ nanowires.

Table S1. Comparison of the apparent Michaelis–Menten constant (K_m) of V₂O₅ nanowires and CoFe₂O₄ nanoparticles (NPs) using H₂O₂ as substrate

	$K_m/\mu M$ (n=3)
Catalyst	H ₂ O ₂
V ₂ O ₅ nanowires	58.9±2.9
CoFe ₂ O ₄ NPs	75.2±2.6

Coexisting	At	Recovery	Coexisting	At	Recovery
species	concentration	(%) ^a	species	concentration	(%) ^a
Na ⁺	23 mg L ⁻¹	99.75±0.43	*Ni ²⁺	0.29 mg L ⁻¹	103.35±0.58
\mathbf{K}^+	39 mg L ⁻¹	100.12±0.78	*Pb ²⁺	1.04 mg L ⁻¹	99.62±0.78
Ca ²⁺	40 mg L ⁻¹	104.73±0.94	*Co ²⁺	58.9 μg L ⁻¹	95.63±0.42
$\mathrm{NH_4^+}$	18 mg L ⁻¹	95.34±0.15	Cl-	36 mg L ⁻¹	99.75±0.43
Mg^{2+}	24 mg L ⁻¹	100.76±0.76	NO ₃ -	62 mg L ⁻¹	100.90±1.46
Zn^{2+}	0.65 mg L ⁻¹	99.40±2.49	SO ₄ ²⁻	96 mg L ⁻¹	102.74±0.78
Al ³⁺	0.27mg L ⁻¹	100.42 ± 0.80	PO ₄ ³⁻	9.5 mg L ⁻¹	101.56±1.70
$*Cu^{2+}$	64 µg L ⁻¹	101.13±0.87	I-	2.54 mg L ⁻¹	95.78±0.52
*Fe ³⁺	$112 \ \mu g \ L^{-1}$	99.31±0.45			

Table S2. Recoveries of H_2O_2 in the presence of foreign species (H_2O_2 : 1.0 μ M)

^a Average of three measurements (mean \pm SD, n=3). * with 1 μ M EDTA.

Table S3. Results of determination of glucose in serum samples

sample	proposed method ^a	Glucose paper method ^b
	(mM)	(mM)
serum 1	4.27±0.01	4.5
serum 2	5.19±0.02	5.2
serum 3	9.92±0.01	10.4

^a Average of three measurements (mean±SD, n=3); ^bThe glucose determination was performed in the laboratory for clinical analysis, the Ninth People's Hospital of Chongqing.

Sample	Found	Added	Total found	Recovery
	$(\mu mol L^{-1})$	(µmol L ⁻¹)	(µmol L ⁻¹)	(%)
Rain water	0.23±0.004	0.5	0.77 ± 0.02	108.0±3.42
		1.0	1.15±0.06	92.1±5.93
		5.0	5.39±0.08	103.2±1.64
Lake water	n.d ^b	0.5	0.45±0.02	90.0±3.39
		1.0	0.95±0.05	95.5±4.58
		5.0	5.00±0.05	100.0±1.02

Table S4. Application of the proposed method to the Determination of H_2O_2 in rainWater and Local Lake Water Samples^a

^a Values shown were the calculated mean H_2O_2 concentration for each sample and were determined from three replicates. ^b n.d = not detected.

Table S5. Effects of different radical scavengers on the CL of luminol- H_2O_2 - V_2O_5 system^a

Scavengers	Intermediates	Concentration	Percent inhibition (%) ^b
H ₂ O	/	/	0
NaN ₃	$^{1}O_{2}$	5 mM	76.1
ascorbic acid	OH∙, O2 ^{•−}	1 µM	98.6
thiourea	OH•	5 mM	99.4
SOD	O2•-	0.07 mg mL^{-1}	91.1

^a Solution conditions were 1 μ M H₂O₂, 8 μ M luminol in 0.2 M Na₂CO₃ (pH 11.3), 18.2 mg L⁻¹ V₂O₅. ^bMean value of three measurements.