Supporting Information

Temperature-Dependent Formation of Ru-based Nanocomposites: Structures and Properties

Yue Teng^{a,b}, Le Xin Song^{*a,c}, Anne Ponchel^{*c}, Eric Monflier^c, Zhi Cheng Shao^a, Juan Xia^{a,b} and Zheng Kun Yang^a

 ^a Department of Chemistry, University of Science and Technology of China, Jin Zhai Road 96, Hefei 230026, China Email: <u>solexin@ustc.edu.cn</u>; Fax: +86-551-3601592; Tel: +86-551-3492002
^b CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
^c Univ. Lille Nord de France, F-59000 Lille, France UArtois, UCCS, Facult édes Sciences, Jean Perrin Rue Souvraz SP 18 F-62307 Lens, France

Email: <u>anne.ponchel@univ-artois.fr</u>; Tel: +33(0)321791754

Pages	Contents
1	A table of contents.
2	XRD pattern of the sintering product of free $RuCl_3$ at 773 K for 4 h in ambient atmosphere.
3	HR-TEM image and SAED pattern of SP-g.
4	STEM images of the SP- c (a, d) and their EDS elemental mappings of O (b, e) and Ru (c, f).
5	TGA curves of pure β -CD (a) and its intimate mixture with RuCl ₃ in air (b: from 300 to 773 K; c: from 673 to 773 K and kept at 773 K during the collection).
6	XRD patterns of the mixtures of RuCl ₃ with α -CD (A) and γ -CD (B) at (a) 573, (b) 773, (c) 873 and (d) 1173 K for 4 h in ambient atmosphere.
7	TG curves of α -, γ -CD, and their intimate mixtures with RuCl ₃ .
8	XRD patterns of the mixtures of $RuCl_3$ with activated carbon at (a) 573, (b) 773, (c) 873 and (d) 1173 K for 4 h in ambient atmosphere.
9	XRD patterns of the sintering product of the mixture (1:1, molar ratio) of RuCl ₃ and β -CD at 773 K for 2 and 4 h in ambient atmosphere.
10	XPS-(O1s) spectra of SP-a and SP-d.

A list of the contents for all the Supporting Information

Fig. S1 XRD pattern of the sintering product of free $RuCl_3$ at 773 K for 4 h in ambient atmosphere. The peaks of RuO_2 are marked by red asterisks.

Fig. S2 HR-TEM image and SAED pattern of SP-g.

Fig. S3 STEM images of the SP-c (a, d) and their EDS elemental mappings of O (b, e) and Ru (c, f). The orange ellipsoids and the orange circles were placed at the center of nanoparticles.

Fig. S4 TGA curves of pure β -CD (a) and its intimate mixture with RuCl₃ in air (b: from 300 to 773 K; c: from 673 to 773 K and kept at 773 K during the collection). The inset of c is the XRD pattern of the collected sample at 773 K for 4 h. The blue and red asterisks denote the characteristic peaks of Ru and RuO₂, respectively.

Fig. S5 XRD patterns of the mixtures of RuCl₃ with α -CD (A) and γ -CD (B) at (a) 573, (b) 773, (c) 873 and (d) 1173 K for 4 h in ambient atmosphere. The peaks of RuO₂ and Ru are marked by red and blue asterisks respectively.

Fig. S6 TG curves of α -, γ -CD, and their intimate mixtures with RuCl₃.

Fig. S7 XRD patterns of the mixtures of $RuCl_3$ with activated carbon at (a) 573, (b) 773, (c) 873 and (d) 1173 K for 4 h in ambient atmosphere. The peaks of RuO_2 and Ru are marked by red and blue asterisks respectively.

Fig. S8 XRD patterns of the sintering product of the mixture (1:1, molar ratio) of RuCl₃ and β -CD at 773 K for 2 and 4 h in ambient atmosphere. The peaks of RuO₂ and Ru are marked by red and blue asterisks respectively.

Fig. S9 XPS-(O 1s) spectra of SP-a and SP-d.