## **Supporting Information**

## Pore structure controllable synthesis of mesoporous poly(ionic liquid)s by copolymerization of alkylvinylimidazolium salts and divinylbenzene

Xuping Feng, Chenjue Gao, Zengjing Guo, Yu Zhou\*, Jun Wang\*

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.

\* Corresponding author. Tel: +86-25-83172264; E-mail: njutzhouyu@njtech.edu.cn (Y. Zhou), junwang@njtech.edu.cn (J. Wang); Tel: +(86) 25-83172264

Table S1 Summary of the different experimental conditions employed in the dispersion polymerization of ionic liquids and DVB, the pore structure parameters and the N content of the obtained PIL products.

| NO. | IL  | solvent | Volume <sup>a</sup> | AIBN <sup>b</sup> | $\mathbf{S}_{\text{BET}}^{c}$ | Vp <sup>d</sup> | Dpe  | Nf  |
|-----|-----|---------|---------------------|-------------------|-------------------------------|-----------------|------|-----|
|     |     |         | (mL)                | (g)               | $(m^2/g)$                     | $(cm^3/g)$      | (nm) | (%) |
| 1   | C4  | MeOH    | 30                  | 0.09              | 213                           | 0.15            | 3.7  | 3.2 |
| 2   | C4  | EtOH    | 30                  | 0.09              | 125                           | 0.23            | 2.4  | 1.4 |
| 3   | C4  | MeCN    | 30                  | 0.09              | 191                           | 0.29            | 3.7  | 1.9 |
| 4   | C4  | MeCN/EA | 15/15               | 0.09              | 341                           | 0.61            | 13.9 | 5.0 |
| 5   | C8  | MeOH    | 30                  | 0.09              | 33                            | 0.05            | 3.7  | 5.6 |
| 6   | C8  | EtOH    | 30                  | 0.09              | 41                            | 0.08            | 3.7  | 1.6 |
| 7   | C8  | MeCN    | 30                  | 0.09              | 192                           | 0.47            | 3.7  | 1.9 |
| 8   | C8  | MeCN/EA | 15/15               | 0.09              | 4                             | 0.02            | 3.7  | 6.0 |
| 9   | C12 | MeOH    | 30                  | 0.09              | 23                            | 0.06            | 3.7  | 2.7 |
| 10  | C12 | EtOH    | 30                  | 0.09              | 20                            | 0.07            | 3.3  | 2.0 |
| 11  | C12 | MeCN    | 30                  | 0.09              | 127                           | 0.30            | 3.7  | 2.3 |
| 12  | C12 | MeCN/EA | 15/15               | 0.09              | 3                             | 0.02            | 3.7  | 5.4 |
| 13  | C16 | MeOH    | 30                  | 0.09              | 9                             | 0.03            | 2.7  | 2.6 |
| 14  | C16 | EtOH    | 30                  | 0.09              | 13                            | 0.05            | 2.4  | 2.3 |
| 16  | C16 | MeCN    | 30                  | 0.09              | 5                             | 0.01            | 2.4  | 1.5 |
| 17  | C16 | MeCN/EA | 15/15               | 0.09              | 41                            | 0.51            | 33   | 4.4 |

<sup>a</sup> solvent volume used in the synthesis; <sup>b</sup> the molar ratio of ionic liquid to AIBN; <sup>c</sup> BET surface area; <sup>d</sup> total pore volume; <sup>e</sup> BJH mesopore diameter calculated from the adsorption branch; <sup>f</sup> the nitrogen content in the finial PILs.



Figure S1 Nitrogen adsorption-desorption isotherms (A) and pore size distributions (B) of the poly(VI-C4--DVB) prepared in five kinds of solvent: (a) MeCN/EA (15/15), (b) MeCN, (c) MeOH and (d) EtOH. The adsorption isotherms for samples a, b and c are shifted by 250, 200 and 100 cm<sup>3</sup> g<sup>-1</sup>. The pore size distribution curves for samples a, b and c are shifted by 0.04, 0.1 and 0.02 cm<sup>3</sup> g<sup>-1</sup>. Nitrogen adsorption-desorption isotherms (C) and pore size distributions (D) of the poly(VI-C8--DVB) prepared in five kinds of solvent: (a) MeCN, (b) EtOH (c) MeOH and (d) MeCN/EA (15/15). The adsorption isotherms for samples a, b and c are shifted by 100, 100 and 50 cm<sup>3</sup> g<sup>-1</sup>. The pore size distribution curves for samples a, b and c are shifted by 0.14, 0.12 and 0.1 cm<sup>3</sup> g<sup>-1</sup>. Nitrogen adsorption-desorption isotherms (E) and pore size distributions (F) of the poly(VI-C8--DVB) prepared in five kinds of solvent: (a) MeCN, (b) MeOH, (c) EtOH and (d) MeCN/EA (15/15). The adsorption isotherms for samples a, b and c are shifted by 0.05, 0.1 and 0.035 cm<sup>3</sup> g<sup>-1</sup>. The pore size distribution curves for samples a, b and c are shifted by 0.05, 0.1 and 0.035 cm<sup>3</sup> g<sup>-1</sup>. Nitrogen adsorption-desorption isotherms (G) and pore size distributions (H) of the poly(VI-C16--DVB) prepared in five kinds of solvent: (a) MeCN. The adsorption isotherms for samples a, b and c are shifted by 100, 50 and 25 cm<sup>3</sup> g<sup>-1</sup>. The pore size distribution curves for samples a, b and c are shifted by 0.05, 0.1 and 0.035 cm<sup>3</sup> g<sup>-1</sup>. Nitrogen adsorption-desorption isotherms (G) and pore size distributions (H) of the poly(VI-C16--DVB) prepared in five kinds of solvent: (a) MeCN/EA (15/15), (b) EtOH, (c) MeOH and (d) MeCN. The adsorption isotherms for samples a, b and c are shifted by 100, 50 and 25 cm<sup>3</sup> g<sup>-1</sup>. The pore size distributions curves for samples a b and c are shifted by 100, 50 and 25 cm<sup>3</sup> g<sup>-1</sup>. The pore size distribution curves for samples a b and c are shifted by 100, 50 and 25 cm<sup>3</sup> g<sup>-1</sup>. The pore size distribution curves for samples b