Supplementary information

$Facile\ synthesis\ of\ Au@Fe_{3}O_{4}\ -graphene\ and\ Pt@Fe_{3}O_{4}\ -graphene\ ternary\ hybrid$

nanomaterials and their catalytic properties

Baoping Lu^{a, b}, Zhe Zhang^a, Jinhui Hao^{a, b}, Jilin Tang^a*

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022,

People's Republic of China

^b University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of

China

*Corresponding author: Tel./fax: +86-431-85262734

E-mail address: jltang@ciac.ac.cn (J. Tang)

Fig. S1 AFM and TEM images of GO used for the fabrication of metal oxide-G.

Fig. S2 Schematic illustration (not to scale) of the procedure for preparing metal oxide-G (metal oxide = Fe_3O_4 , ZnO and Cu₂O) composites.

Fig. S3 TEM images with different magnification of Fe_3O_4 -G (A, B and C) and the corresponding size distribution of Fe_3O_4 on the surface of graphene sheets.

Fig. S4 UV-vis absorbance spectra of Fe₃O₄-G and GO aqueous solution.

Fig. S5 FTIR spectra of Fe_3O_4 -G and GO.

Fig. S6 Raman spectra of Fe₃O₄-G and GO.

Fig. S7 High-resolution XPS spectra in the C 1s regions of Fe₃O₄-G and GO.

Fig. S8 TEM images of ZnO-G (A and B). XRD pattern (C) and XPS spectra (D) of ZnO-G. High-resolution XPS spectra in the C 1s (E) and Zn 2p (F) regions of ZnO-G. UV-vis absorbance spectra (G) and FTIR spectra (H) of ZnO-G.

Fig. S9 TEM images of Cu₂O-G (A and B). XRD pattern (C) and XPS spectra (D) of Cu₂O-G. High-resolution XPS spectra in the C 1s (E) and Cu 2p (F) regions of Cu₂O-G. UV-vis absorbance spectra (G) and FTIR spectra (H) of Cu₂O-G.

Characterization of ZnO-G and Cu₂O-G

1. TEM characterization

The morphologies of ZnO-G and Cu₂O-G were characterized by TEM. Clearly, the stratiform G sheets covered with ZnO nanospheres or Cu₂O nanoparticles are observed, as shown in Fig. S8 (A, B) and Fig. S9 (A, B). Simultaneously, it can be seen that the ZnO and Cu₂O are predominantly located at the edges and wrinkles of G sheets, where oxygen-containing functional groups are relatively abundant, and serve as linking groups for electrostatic attraction.

2. XRD analysis

The XRD patterns of ZnO-G and Cu₂O-G are also shown in Fig. S8C and Fig. S9C. The pattern obviously consist of two sets of diffraction peaks (G and ZnO), the diffraction peak at $2\theta = 23.8^{\circ}$ correspond to G sheets and the other seven diffraction peaks correspond to wurtzite phase of ZnO, which is consistent with the standard XRD data file of ZnO (JCPDS no. 36-1451) (Fig. S8C). The pattern of Cu₂O-G also consist of two sets of diffraction peaks (G and Cu₂O), the diffraction peak at $2\theta =$ 22.5° correspond to G sheets and the other five diffraction peaks can be indexed to cubic phase Cu₂O (JCPDS no. 78-2076) (Fig. S9C).

3. XPS of ZnO-G and Cu_2O -G

The chemical composition of ZnO-G and Cu_2O -G was obtained by XPS. The survey spectrum of ZnO-G shows the presence of Zn and O as well as C (Fig. S8D). High-resolution XPS spectra of C 1s and Zn 2p were also performed, and we can see that the XPS spectrum of C 1s can be deconvoluted into two peaks centered at 284.6 and

288.4 eV. The peak at 284.6 eV is attributed to the C=C/C–C, while the peak positioned at 288.4 eV is assigned to the O=C–OH species (Fig. S8E). The Zn 2p spectrum shows two peaks at 1021.4 and 1044.5 eV which are assigned to the 2p3/2 and 2p1/2 components, respectively, as reported for ZnO (Fig. S8F).¹ Fig. S9D is the XPS general spectra of Cu₂O-G. Apart from C and O, the element of Cu is also existed in Cu₂O-G composites. The high-resolution XPS spectrum of C 1s was shown in Fig. S9E and two peaks located at 284.6 and 288.4 eV were also observed. Besides the C 1s peak, the two peaks recorded in the region of Cu 2p at 932.2 and 952.2 eV are in agreement with the literature data for Cu₂O (Fig. S9F).²

4. UV-vis spectroscopy and FTIR spectra of ZnO-G and Cu₂O-G

The optical properties of ZnO-G and Cu₂O-G were investigated using UV-vis spectroscopy and FTIR. Fig. S8G was the UV-vis absorption spectra of GO and ZnO-G. Compared with GO, a sharp characteristic absorption peak at 361 nm appeared in ZnO-G, indicated the presence of good crystalline and impurity suppressed ZnO nanostructures.^{3, 4} The IR spectra of GO and ZnO-G were shown in Fig. S8H. The absorption band at 461 cm⁻¹ for the ZnO-G can be assigned to the stretching vibration of Zn–O.⁵ The UV-vis absorption spectra and IR spectra of GO and Cu₂O-G were also shown in Fig. S9G and Fig. S9H. The Cu₂O-G nanocomposites have absorption in the whole UV-visible region ranging from 200 nm to 700 nm, similar to previously literature reported.⁶ Furthermore, the IR absorption of Cu₂O-G at 626 cm⁻¹ was ascribed to Cu–O bond vibration.⁷

Fig. S10 XPS general spectra of Au@Fe₃O₄-G and Pt@Fe₃O₄-G.

Fig. S11 TEM images of Au@Fe₃O₄-G (A, C) and Pt@Fe₃O₄-G (B, D) prepared under the same conditions except that the synthesis was conducted in the presence or absence PDDA functionalization.

Reference

- 1 S. Ghosh, V. S. Goudar, K. G. Padmalekha, S. V. Bhat, S. S. Indi and H. N. Vasan, *RSC Adv.* 2012, **2**, 930-940.
- 2 Y. Zhang, X. Wang, L. Zeng, S. Song and D. Liu, *Dalton Trans.* 2012, **41**, 4316-4319.
- 3 J. Wu, X. Shen, L. Jiang, K. Wang and K. Chen, *Appl. Surf. Sci.* 2010, **256**, 2826-2830.
- 4 F. Liu, Y. Zhang, J. Yu, S. Wang, S. Ge and X. Song, *Biosens. Bioelectron*. 2014, **51**, 413-420.
- 5 Y. Liu, Y. Hu, M. Zhou, H. Qian and X. Hu, *Appl. Catal.*, *B* 2012, **125**, 425-431.
- 6 B. Li, T. Liu, L. Hu and Y. Wang, J. Phys. Chem. Solids 2013, 74, 635-640.
- 7 B. Li, H. Cao, G. Yin, Y. Lu and J. Yin, J. Mater. Chem. 2011, 21, 10645-10648.