Novel functionalized conjugated polypyrene with polyacrylate: synthesis,

electrochemistry, luminescence, and chemical sensing properties

Leiqiang Qin,^{a,b} Baoyang Lu,^a Jingkun Xu,^a Ge Zhang^a and Shimin Zhang^a

^a Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology

Normal University, Nanchang 330013, P. R. China

E-mail: xujingkun@tsinghua.org.cn.

^bInstitute of Polymer Optoelectronic Materials and Devices, State Key Laboratory

of Luminescent Materials and Devices, South China University of Technology,

Guangzhou 510640, P. R. China

The fluorescence quantum yield (Φ) of soluble Py-PAA, PPy-AA and PPy-PAA were measured and calculated according to the well-known method given as:

$$\Phi = \Phi_{\rm ref}(n^2 A_{\rm ref} I/n_{\rm ref}^2 A I_{\rm ref})$$
⁽¹⁾

where ref denotes the reference, n is the refractive index of the solvent, A is the absorbance at the excitation wavelength, and I is the intensity of the emission spectrum. Here, we use anthracene in acetonitrile ($\Phi_{ref} = 0.27$) as the reference [1]. It is worth mentioning that absorbance of the sample and the reference should be similar and small (<0.10) [2].

The fluorescence quantum efficiency of Py-PAA, PPy-AA and PPy-PAA-2 in THF were measured to be 0.39, 0.55 and 0.66 respectively according to Eq.(1).

The molecular weight measurements of PPy-AA and PPy-PAA-2 were determined by gel permeation chromatography (GPC) with tetrahydrofuran as the solvent. From GPC results, PPy-AA showed its number-average molar mass (M_n) of about 4211 and weight-average molar mass (M_w) of 7582 (M_w/M_n =1.80) in tetrahydrofuran. The PPy-PAA-2 showed M_n =11366 and M_w =16902 (M_w/M_n =1.48).

Fig. S1. IR spectra of 6-bromo-1-(pyren-1-yl)hexan-1-one (a) and 1-(6-Bromohexyl)

pyrene (b).

Fig. S2. CVs of PPy-AA (A) and PPy-PAA-1 (B) films prepared from DCM containing Bu_4NPF_6 (0.1 M) in concentrated sulfuric acid at potential scan rates of (a) 50, (b) 100, (c) 150, (d) 200, (e) 250, and (f) 300 mV s⁻¹. Inset: plots of redox peak current densities vs. potential scan rates. j_p is the peak current density: $j_{p,a}$ and $j_{p,c}$ denote the anodic and cathodic peak current densities, respectively.

Fig. S3. Solid-state UV–vis spectra and emission spectra of PPy-PAA-1 deposited on the ITO electrode. Inset: Photograph of PPy-PAA-1 under 365 nm UV irradiation.

Fig. S4 Fluorescence emission spectra of PPy-PAA-2 (1×10^{-6} M) in THF in the presence of different amounts of metal ions. Excitation wavelength: 363 nm.

Fig. S5 Fluorescence Emission spectra of PPy-PAA-2 (1×10^{-6} M) in THF in the presence of different metal ions (5.67×10^{-7} mol/L), A: PPy-PAA-2, B: PPy-PAA-2 + cation without Fe³⁺, C: PPy-PAA-2 + all cation. Excitation wavelength (nm): 363.

Fig. S6 Fluorescence emission response profiles of PPy-PAA-2 + Fe³⁺ in THF after added Fe³⁺ (5.67 × 10⁻⁷ mol L⁻¹), and turned on by different anions (3.5×10^{-5} mol L⁻¹). Insert: fluorescence images in the presence of different metal anions. A) PPy-PAA, B) PPy-PAA-2 + Fe³⁺, C) Pi, D) NO₂⁻, E) SO₃²⁻, F) S₂O₃²⁻, G) I⁻, H) Cl⁻, I) SO₄²⁻, J) CO₃²⁻, K) F⁻, L) HCO₃⁻, M) NO₃⁻, N) Br⁻. The polymer concentration was 1.0×10^{-6} mol L⁻¹. Excitation wavelength (nm): 363.

Fig. S7 Fluorescence emission spectra of PPy (1×10^{-6} M, figure A) and PPy-AA (5×10^{-6} M, figure B) in THF in the presence of different amounts of Fe³⁺. Inset: fluorescence response of PPy and PPy-AA to Fe³⁺. Excitation wavelength (nm):317 for PPy and 355 for PPy-AA.

The quenching efficiency of PPy, PPy-AA and PPy-PAA-2 were nearly fit to the Stern–Volmer equation, $I_0/I = K_{SV}[A] + 1$, which related the fluorescence intensity, I,

at different concentrations of analyte quencher, [A], where I_0 was the intensity at [A] = 0, and K_{SV} was the Stern–Volmer constant. According to the fluorescence titration of PPy, PPy-AA and PPy-PAA in THF solutions with Fe³⁺, K_{SV} were determined to be 8.6×10^3 M⁻¹ for PPy, 8.0×10^4 M⁻¹ for PPy-AA and 4.7×10^5 M⁻¹ for PPy-PAA-2, respectively.

Reference:

C. Zimmermann, M. Mohr, H. Zipse, R. Eichberger, W. Schnabel, J. Photochem.
 Photobiol. A. Chem., 1999, 125, 47.

[2] F. C. Tasi, C. C. Chang, C. L. Liu, W. C. Chen, S. A. Jenekhe, Macromolecules, 2005, 38, 1958.