Electronic Supplementary Information

Efficient Ru-Fe catalyzed selective hydrogenolysis of carboxylic acids to alcoholic chemicals

Wenjing Li^a, Linmin Ye^a, Pei Long^a, Jin Chen^a, Hiroko Ariga^b, Kiyotaka Asakura^b, Youzhu Yuan^{*a}

 ^a State Key Laboratory of Physical Chemistry of Solid Surfaces and National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
^b Catalysis Research Center, Hokkaido University, Kita-ku N21W10, Sapporo, Hokkaido 001-0021,

Japan

Catalyst	Conversion /	Selectivity / %			<i>D</i> _{Ru} (%)		TOF ^d	
	%							
		EtOH	AH	Gas	Others	TEM ^b	H/Ru ^c	/ h ⁻¹
Ru/SBA-15	15.5	22.6	1.4	74.5	1.5	7.3	1.22	637.1
Ru ₁₅ -Fe ₁ /SBA-15	16.4	68.0	1.3	30.3	0.4	7.4	2.10	827.4
Ru ₁₀ -Fe ₁ /SBA-15	21.1	68.3	18.7	7.6	5.4	7.7	2.38	939.3
Ru ₃ -Fe ₁ /SBA-15	23.2	65.1	22.1	7.2	5.6	7.8	1.76	1396.6
Ru ₂ -Fe ₁ /SBA-15	25.5	62.0	26.8	6.8	4.4	8.0	1.38	1957.8
Ru _{1.5} -Fe ₁ /SBA-15	26.5	63.5	18.9	6.5	11.1	7.1	0.78	1799.8
Ru ₁ -Fe ₁ /SBA-15	21.7	64.9	16.2	6.4	12.5	6.9	0.65	1768.6
Fe/SBA-15	1.3	37.5	12.2	7.6	42.7	_	0.14	491.9

Table 1S Catalytic performance and metal dispersion of as-reduced 5% Ru_x-Fe_y/SBA-15 catalysts^a

^a Reaction conditions: catalyst weight = 0.20 g, T = 493 K, $P(H_2) = 3.0$ MPa, $H_2/Acid = 80$, AcOH conversion was controlled below 30%. ^b The Ru nanoparticles were regarded as the spheres. Therefore, the Ru dispersion, D_{Ru} was calculated as D = 1.32/d, according to literature¹. ^c The D_{Ru} was calculated by H₂ adsorption as described in literature. ^d The TOF was calculated by metal dispersion from H₂ adsorption.

Catalyst	Particle size	Conversion	Selectivity / %				
(Ru loading = 5 wt%)	/ nm	/ %	EtOH	EtOAc	AH	Acetone	Gases ^b
Ru/SBA-15	18.1	71.0	0.6	0.3	0.9	0	98.2
Ru ₁₅ -Fe ₁ /SBA-15	17.8	92.8	49.4	0.6	0.5	0	49.5
Ru_{10} -Fe ₁ /SBA-15	17.1	91.5	83.6	3.1	1.6	0	11.7
Ru ₃ -Fe ₁ /SBA-15	16.9	91.0	82.8	5.2	2.3	0	9.7
Ru_2 - $Fe_1/SBA-15$	16.5	91.6	86.2	6.1	2.5	0	5.2
Ru _{1.5} -Fe ₁ /SBA-15	18.7	75.1	67.7	22.4	4.3	0	5.6
Ru ₁ -Fe ₁ /SBA-15	19.2	66.5	58.7	30.0	5.1	0	6.2
Fe/SBA-15	_	1.8	6.2	6.3	15.8	61.3	10.4
Ru ₂ -Fe ₁ /SiO ₂	29.6	46.2	14.0	56.2	0.8	0	29.0
Ru ₂ -Fe ₁ /SBA-15-	29.3	69.5	67.8	17.3	2.5	0	12.4
CoIm-773 K							
Ru ₂ -Fe ₁ /SBA-15-	3.2	99.9	0.3	0	0	0	99.7
CoIm-573 K							
^a Reaction conditions: catalyst weight = 0.20 g, $P(H_2) = 3.0$ MPa, $T = 533$ K, $LHSV_{(AcOH)} = 1.5$ h ⁻¹ , $H_2/Acid = 80$.							

Table 28 Catalytic performance of supported 5% Ru_x -Fe_y catalysts for AcOH hydrogenolysis^a

^b Gases include methane, ethane, and CO_x.

Catalyst	Conversion / %	Selectivity / %					
(Ru loading = 5 wt%)		EtOH	EtOAc	АН	Acetone	Gases ^b	
Ru ₂ -Fe ₁ /SBA-15	91.6	86.2	6.1	2.5	0	5.2	
Ru_2 -Fe ₁ /ZSM-5	88.7	55.1	2.3	3.8	0	38.8	
(Si/Al=50)							
Ru_2 -Fe ₁ /ZSM-5	84.7	52.5	8.1	12.3	0.0	27.1	
(Si/Al=25)							
Ru ₂ -Fe ₁ /HY	62.7	30.3	48.3	4.2	0.1	17.1	
(Si/Al=30)							
Ru_2 - Fe_1/SiO_2	46.2	14.0	56.2	0.8	0	29.0	
Ru_2 - Fe_1/Al_2O_3	87.3	60.0	1.8	2.0	0.1	36.1	
^a Reaction conditions: catalyst	weight = 0.20 g, P	$(H_2) = 3.0 \text{ M}$	Pa, T = 533	K, LHSV ₍	$_{AcOH)} = 1.5 h^{-1},$	$H_2/Acid = 80.$	

Table 3S Catalytic performance of supported 5% Ru_x -Fey catalysts with different supports for AcOHhydrogenolysisa

^b Gases include methane, ethane, and CO_x.

Fig. 1S The XRD patterns of 5% Ru_2 -Fe₁/SBA-15 catalyst before and after the catalytic run for 300 h and the TEM image after the long-term run.

Fig. 2S The low-angle XRD pattern: (a) 5% Ru_2 -Fe₁/SBA-15, (b) 5% Ru_2 -Fe₁/SBA-15 after the catalytic run on stream for 300 h, and (c) SBA-15.

Fig. 3S The standard XRD data files of Ru and Fe: (a) Ru, (b) Fe.

Fig. 4S TEM images and particle size distribution of 5% Ru_x -Fe_y/SBA-15 catalysts with different Ru/Fe atomic ratios: (a) Ru/SBA-15, (b) Ru₁₅-Fe₁/SBA-15, (c) Ru₁₀-Fe₁/SBA-15, (d) Ru₃-Fe₁/SBA-15, (e) Ru₂-Fe₁/SBA-15, (f) Ru_{1.5}-Fe₁/SBA-15, and (g) Ru₁-Fe₁/SBA-15, (h) Ru₂-Fe₁/SBA-15-773 K, (i) Ru₂-Fe₁/SBA-15-573 K.

Fig. 5S TEM image, STEM-EDX elemental mappings of 5% Ru₂-Fe₁/SiO₂ catalyst: (a) TEM image, (b) dark-field image, (c) STEM-EDX elemental mappings for Si, (d) STEM-EDX elemental mappings for Ru, and (e) STEM-EDX elemental mappings for Fe.

Fig. 6S Hydrogenolysis of EtOH over 5% Ru/SBA-15 and 5% Ru₂-Fe₁/SBA-15 catalysts at 463 K.

Reference

1 B. D. Li, J. Wang, Y. Z. Yuan, H. Ariga, S. Takakusagi and K. Asakura, ACS Catal., 2011, 1, 1521-

1528.