Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

FACILE, HIGH-YIELDING PREPARATION OF PYRROLIDINIUM, PIPERIDINIUM, MORPHOLINIUM AND 2,3-DIHYDRO-1*H*-ISOINDOLINIUM SALTS AND IONIC LIQUIDS FROM SECONDARY AMINES

Supplementary Information

Antony J. Ward, Anthony F. Masters, Thomas Maschmeyer*

Laboratory of Advanced Catalysis for Sustainability, School of Chemistry F11, The University of Sydney, NSW, 2006, AUSTRALIA

CALCULATION OF OVERALL "GREENNESS" SCORE

EHS Scores for the chemicals used

CHEMICAL	HEALTH	SAFETY	ENVIRON.	EHS SCORE ^a
K ₂ CO ₃	7	10	10	8.9
LiNTf ₂	4	10	7	6.5
Br(CH ₂) ₄ Br	4	10	10	7.4
Br(CH ₂) ₅ Br	10	10	10	10
{Br(CH ₂) ₂ } ₂ O	7	10	10	8.9
o-C ₆ H ₄ (CH ₂ Br) ₂	4	10	10	7.4
HN(C ₂ H ₅) ₂	7	4	10	6.5
HN(C ₃ H ₇) ₂	7	4	10	6.5
HN(C ₄ H ₉) ₂	7	4	10	6.5
HN(C ₂ H ₅)(C ₄ H ₉)	7	4	10	6.5
HN(CH ₃)(C ₄ H ₉)	7	4	10	6.5
Pyrrolidine	7	4	10	6.5
Piperidine	4	4	10	5.4
Morpholine	7	7	10	7.9
Formaldehyde	1	10	1	2.2
C ₄ H ₉ Br	10	4	4	5.4
CH ₃ CO ₂ H	4	7	10	6.5
Zinc	10	1	1	2.2
NaBH ₄	4	4	10	5.4

^a Determined by the geometric mean of the Health, Safety, and Environmental scores.

Assessment of Chemistry scores

	For the new method:	For Scheme 4:
Work-up	10	7
Co-reagents	4	4
Other issues	10	10
Stoichiometry	7	1
Clean Chemistry scor	e 7.3	4.1

Calculation of Overall "Greenness" scores

For the synthesis of **15** (*N*-butyl-*N*-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide):

For the new method:

Overall EHS =
$$(EHS(K_2CO_3) \times EHS(HN(CH_3)(C_4H_9)) \times EHS(Br(CH_2)_4Br) \times EHS(LiNTf_2))^{1/4}$$

= $(8.9 \times 6.5 \times 7.4 \times 6.5)^{1/4}$
= 7.3

Overall "greenness" score =
$$(EHS \times Clean Chemistry)^{1/2}$$

= $(7.3 \times 7.3)^{1/2}$
= 7.3

For Scheme 4 (method 1 in step 1):

Overall EHS = (EHS(pyrrolidine) × EHS(Zn) × EHS(formaldehyde) × EHS(CH₃CO₂H) x
EHS(C₄H₉Br) × EHS(LiNTf₂))^{1/6}
=
$$(6.5 \times 2.2 \times 2.2 \times 6.5 \times 5.4 \times 6.5)^{1/6}$$

= 4.4

Overall "greenness" score =
$$(EHS \times Clean Chemistry)^{1/2}$$

= $(4.1 \times 4.4)^{1/2}$
= 4.2

For Scheme 4 (method 2 in step 1):

Overall EHS = (EHS(pyrrolidine) × EHS(formaldehyde) × EHS(NaBH₄) × EHS(C₄H₉Br) × EHS(LiNTf₂))^{1/5}
=
$$(6.5 \times 2.2 \times 5.4 \times 5.4 \times 6.5)^{1/5}$$

= 4.9

Overall "greenness" score =
$$(EHS \times Clean Chemistry)^{1/2}$$

= $(4.9 \times 4.1)^{1/2}$
= 4.5