Supporting materials

Heterogeneously copper-catalyzed oxidative synthesis of imidazo[1,2-*a*]pyridines using 2-aminopyridines and ketones under ligand- and additive-free conditions

Xu Meng, Yanmin Wang, Chaoying Yu and Peiqing Zhao*

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R China. Fax:+96 931 8277008;Tel: +86 931 4968688; E-mail: <u>zhaopq@licp.cas.cn</u>

Table of Contents

General information and procedure	S2-S3
Characterization of catalyst	S2
Spectrum data of products	S3-S14
Copy of ¹ H NMR and ¹³ C NMR spectra for products	S14-S45

General information

All reagents were purchased from commercial suppliers and used without further purification. Metal salts and catalyst supports were commercially available and were used directly. All experiments were carried out under air. Flash chromatography was carried out with Merck silica gel 60 (200-300 mesh). Analytical TLC was performed with Merck silica gel 60 F254 plates, and the products were visualized by UV detection. ¹H NMR and ¹³C NMR (400 and 100 MHz respectively) spectra were recorded in CDCl₃. Chemical shifts (δ) are reported in ppm using TMS as internal standard, and spin-spin coupling constants (*J*) are given in Hz.

Preparation of CuCl₂/nano-TiO₂

Support nano-TiO₂ powder (1g, particle size \leq 30 nm, BET surface area \geq 120 m²/g, anatase) was added to a 50 mL round-bottom flask. A solution of CuCl₂-2H₂O (0.108g) in acetone (10 mL) was added to nano-TiO₂ powder, and additional acetone (10 mL) was added to wash down the sides of the flask. Then the flask was submerged into an ultrasound bath for 3h at room temperature and stirred for further 20h at room temperature. After that, the acetone was distilled under reduced pressure on a rotary evaporator at 50 °C for more than 2h. Finally, the dried pale green powder was obtained.

Characterization of CuCl₂/nano-TiO₂

The Inductive Coupled Plasma Optical Emission Spectrum (ICP-OES) showed that the content of catalyst is Cu% = 3.16%BET surface area: 65.0286 m²/g Pore volume (BJH Adsorption): 0.2792 cm³/g Pore size (BJH Adsorption): 16.1826 nm

General procedure for CuCl₂/nano-TiO₂-catalyzed cyclization

CuCl₂/nano-TiO₂ (12 mg, 0.8 mol%), 2-aminopyridine (0.6 mmol), ketone (0.5 mmol) and EtOH (0.6 mL) were added to a flask with a bar. The flask was stirred at 70 °C for 24h under air. After cooling to room temperature, the mixture was diluted with ethyl acetate and filtered. The filtrate was removed under reduced pressure to get the crude product, which was further purified by silica gel chromatography (petroleum/ethyl acetate = 3/1 as eluent) to yield corresponding product. The identity and purity of the products was confirmed by ¹H and ¹³C NMR spectroscopic analysis.

Spectrum data of the products

2-phenylH-imidazo[1,2-*a*]pyridine (3a)^[1]

White solid, isolated yield 87%.¹H NMR (400MHz, CDCl₃): $\delta = 8.08$ (d, 1H, J = 5.6 Hz), 7.96(d, 2H, J = 5.2 Hz), 7.84(s, 1H), 7.61(d, 1H, J = 9.2₃

Hz), 7.43(t, 2H, J = 7.6 Hz), 7.33(t, 1H, J = 6.8 Hz), 6.75(m,1H); ¹³C NMR (100MHz, CDCl₃): $\delta = 145.8$, 145.6, 133.7, 128.7, 127.9, 126.0, 125.5, 124.6, 117.5, 112.4, 108.1.

2-(4-methoxyphenyl)H-imidazo[1,2-*a*]pyridine (3b)^[1]

White solid, isolated yield 85%.¹H NMR (400MHz, CDCl₃): $\delta = 7.92$ (d, 1H, J = 6.8 Hz), 7.83(d, 2H, J = 7.2 Hz), 7.62(s, 1H), 7.56(d, 1H, J = 8 Hz), 7.06(t, 1H, J = 1.2 Hz), 6.93(d, 2H, J = 7.2 Hz), 6.62(t, 1H, J = 6.8Hz), 3.78(s, 3H); ¹³C NMR (100MHz, CDCl₃): $\delta = 159.3$, 145.3, 145.2, 127.0, 126.2, 125.3, 124.2, 116.8, 113.9, 111.9, 107.1, 55.0.

2-(3-methoxyphenyl)H-imidazo[1,2-a]pyridine (3c)^[1]

White solid, isolated yield 84%.¹H NMR (400MHz, CDCl₃): *δ* = 7.98(d, 1H, *J* = 6.4 Hz), 7.75(s, 1H), 7.53(d, 1H, *J* = 10 Hz), 7.52(s, 1H), 7.30(d, 1H, J = 7.2 Hz), 7.22(t, 1H, *J* = 7.2 Hz), 6.85(m,1H), 6.66(m, 1H), 3.84(s, 3H); ¹³C NMR (100MHz, CDCl₃): *δ* = 159.9, 145.5, 145.4, 135.1, 129.5, 125.5, 124.5, 118.3, 117.2, 113.9, 112.2, 110.8, 108.3, 55.2.

2-(2-methoxyphenyl)H-imidazo[1,2-a]pyridine (3d)^[2]

Yellow oil, isolated yield 69%.¹H NMR (400MHz, CDCl₃): δ = 8.41(d, 4

1H, J = 8 Hz), 8.15(s, 1H), 8.04(d, 1H, J = 6.8 Hz), 7.59(d, 1H, J = 9.2Hz), 7.28(m,1H), 7.10(d, 2H, J = 6.4 Hz), 6.96(t, 1H, J = 8 Hz), 6.66(m,1H), 3.08(s, 3H); ¹³C NMR (100MHz, CDCl₃): $\delta = 156.6$, 144.2, 140.9, 128.6, 125.5, 124.2, 122.2, 120.8, 116.9, 112.4, 111.7, 110.7, 55.2. **2-p-tolylH-imidazo[1,2-***a***]pyridine (3e)**^[1]

Me Me

White solid, isolated yield 88%.¹H NMR (400MHz, CDCl₃): δ = 8.06(d, 1H, *J* = 6.4 Hz), 7.84(d, 2H, *J* = 8.4 Hz), 7.79(s, 1H), 7.61(d, 1H, *J* = 8.8 Hz), 7.24(d, 2H, J = 8 Hz), 7.13(m, 1H), 6.73(t,1H, *J* = 6.4 Hz), 2.38(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ = 145.9, 145.6, 137.7, 130.9, 129.4, 125.8,125.5, 124.4, 117.4, 112.1, 107.7, 21.2.

2-m-tolylH-imidazo[1,2-a]pyridine (3f)^[3]

White solid, isolated yield 82%.¹H NMR (400MHz, CDCl₃): δ = 7.95(d, 1H, *J* = 6.8 Hz), 7.81(s, 1H), 7.72-7.67(m, 2H), 7.58(d, 1H, *J* = 8.4 Hz), 7.29(t, 1H, J = 7.6 Hz), 7.12-7.03(m, 2H), 6.65-6.62(m,1H), 2.39(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ = 145.5, 145.3, 128.4, 128.5, 128.4, 126.9, 125.4, 124.3, 122.8, 117.1, 112.1, 107.9, 21.2.

2-(naphthalen-2-yl)H-imidazo[1,2-a]pyridine (3g)^[5]

White solid, isolated yield 91%.¹H NMR (400MHz, CDCl₃): $\delta = 8.49$ (s, 1H), 7.92-7.88(m, 3H), 7.84-7.77(m, 3H), 7.62(d, 1H, J = 8.8 Hz), 7.46-7.44(m, 2H), 7.18-7.14(t, 1H, J = 8 Hz), 6.63 (t, 1H, J = 6.8 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 145.6$, 145.4, 13.6, 133.0, 128.2, 128.1, 127.5, 126.1, 125.8, 125.5, 124.6, 124.5, 124.0, 117.2, 112.2, 108.5.

2-(4-chlorophenyl)H-imidazo[1,2-a]pyridine (3h)^[2]

Yellow solid, isolated yield 92%.¹H NMR (400MHz, *d*-DMSO): δ = 8.52(d, 1H, J = 6.4 Hz), 7.99(d, 2H, J = 8.8 Hz), 7.59(d, 1H, J = 8.8 Hz), 7.49(d, 2H, J = 8.8 Hz), 7.26(t, 1H, J = 8 Hz), 6.90(t, 1H, J = 6.8 Hz); ¹³C NMR (100MHz, *d*-DMSO): δ = 150.0, 145.2, 133.6, 126.5, 126.4, 124.2, 121.7, 116.1, 112.2, 111.7, 107.0.

2-(3-chlorophenyl)H-imidazo[1,2-a]pyridine (3i)^[2]

Yellow solid, isolated yield 88%.¹H NMR (400MHz, *d*-DMSO): $\delta = 8.54(d, 1H, J = 6.8 Hz)$, 8.51(s, 1H), 8.04(s, 1H), 7.94(d, 1H, J = 8 Hz), 7.61(d, 1H, J = 9.2 Hz), 7.47(d, 1H, J = 8 Hz), 7.39(d, 1H, J = 0.8 Hz), 7.28(t, 1H, J = 7.8 Hz), 6.94-6.91(m, 1H); ¹³C NMR (100MHz, *d*-DMSO): $\delta = 144.8$, 142.8, 136.1, 133.6, 130.6, 127.4, 126.9, 125.3, 125.1, 124.0, 116.7, 112.5, 109.9.

2-(2-chlorophenyl)H-imidazo[1,2-*a*]pyridine (3j)^[4]

White solid, isolated yield 70%.¹H NMR (400MHz, CDCl₃): δ = 8.29-8.27(m, 1H), 8.24(s, 1H), 8.08(d, 1H, *J* = 6.8 Hz), 7.60(d, 1H, *J* = 8.8 Hz), 7.44-7.42(m, 1H), 7.35(s, 1H), 7.22(t, 1H, *J* = 8 Hz) 6.74-6.71(m,1H); ¹³C NMR (100MHz, CDCl₃): δ = 144.4, 141.6, 132.2, 131.6, 130.8, 128.5, 126.9, 125.7, 124.8, 117.4, 112.3.

2-(4-bromophenyl)H-imidazo[1,2-*a*]pyridine (3k)^[1]

White solid, isolated yield 85%.¹H NMR (400MHz, CDCl₃): $\delta = 8.07$ (d, 1H, J = 6.4 Hz), 7.81-7.52(m, 6H), 7.17(t, 1H, J = 7.6 Hz), 6.77(t, 1H, J = 6.4 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 145.7$, 144.6, 132.7, 131.8, 127.5, 124.9, 121.8, 117.5, 112.6, 108.2.

2-(3-nitrophenyl)H-imidazo[1,2-*a*]pyridine (3l)^[4]

Yellow solid, isolated yield 72%.¹H NMR (400MHz, *d*-DMSO): δ = 8.78(s, 1H), 8.66(s, 1H), 8.58(s, 1H), 8.41(s, 1H), 8.17(s, 1H), 7.75(s, 1H) 7.65(d, 1H, *J* = 7.8 Hz), 7.34(s, 1H), 6.98(s, 1H); ¹³C NMR (100MHz, *d*-DMSO): δ = 148.4, 144.8, 141.6, 135.4, 131.7, 130.4, 127.2, 125.9, 122.2, 119.7, 116.7, 112.9, 110.6.

4-(H-imidazo[1,2-*a***]pyridin-2-yl)-N,N-dimethylbenzenamine (3m)**^[6]

Yellow solid, isolated yield 65%.¹H NMR (400MHz, *d*-DMSO): $\delta = 8.46(d, 1H, J = 6.8 Hz)$, 8.18(s, 1H), 7.79(d, 2H, J = 8.8 Hz), 7.53(d, 1H, J = 9.2 Hz), 7.21-7.19(m, 1H), 6.84(t, 1H, J = 6.8 Hz), 6.78(d, 2H, J = 8.8 Hz), 2.94(s, 6H); ¹³C NMR (100MHz, *d*-DMSO): $\delta = 150.0$, 145.2, 144.6, 126.5, 126.4, 124.2, 121.8, 116.1, 112.2, 111.7, 107.0, 40.1.

2-(4-(trifluoromethyl)phenyl)H-imidazo[1,2-a]pyridine (3n)^[6]

White solid, isolated yield 86%.¹H NMR (400MHz, CDCl₃): δ = 8.10(d, 1H, J = 6.8 Hz), 8.04(d, 2H, J = 8 Hz), 7.89(s, 1H), 7.68-7.62(m, 3H), 7.19(t, 1H, J = 1.2 Hz), 6.81-6.77(m, 1H); ¹³C NMR (100MHz, CDCl₃): δ = 145.8, 144.3, 137.3 129.8, 129.5, 126.1, 125.7, 125.6, 125.5, 125.2, 122.9, 117.8, 112.8, 108.9.

2-(3-(trifluoromethyl)phenyl)H-imidazo[1,2-a]pyridine (3o)^[6]

White solid, isolated yield 72%.¹H NMR (400MHz, CDCl₃): δ = 8.19(s, 1H), 8.04-7.99(m, 2H), 7.82-7.78(m, 1H), 7.58-7.50(m, 3H), 7.13-7.11(m, 1H), 6.71-6.67(m, 1H); ¹³C NMR (100MHz, CDCl₃): δ = 145.6, 144.1, 134.6, 131.1., 130.8, 129.0, 128.9, 125.6, 125.5, 125.0, 124.3, 122.8, 122.6, 117.4, 112.6, 108.5.

2-(2-(trifluoromethyl)phenyl)H-imidazo[1,2-a]pyridine (3p)^[6]

White solid, isolated yield 64%.¹H NMR (400MHz, CDCl₃): $\delta = 8.07$ (d, 1H, J = 6.8 Hz), 7.95(d, 1H, J = 8 Hz), 7.77(s, 1H), 7.72(d, 1H, J = 7.6Hz), 7.60-7.55(m, 2H), 7.41(t, 1H, J = 7.6 Hz), 7.14-7.1(m, 1H), 6.73(t, 1H, J = 6.8 Hz); ¹³C NMR (100MHz, CDCl₃): $\delta = 144.7$, 142.3, 133.3, 132.4, 131.6, 127.6, 125.9, 125.8, 125.6, 124.7, 117.6, 112.4, 111.3.

methyl 4-(H-imidazo[1,2-a]pyridin-2-yl)benzoate (3q)^[6]

White solid, isolated yield 81%.¹H NMR (400MHz, CDCl₃): δ = 8.11-8.10(m, 3H), 8.01(d, 2H, J = 8.4 Hz), 7.92(s, 1H), 7.63-7.61(m, 1H), 7.18(t, 1H, J = 1.2 Hz), 6.80-6.77(m, 1H), 3.92(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ = 166.9, 145.8, 144.5, 138.2, 130.0, 129.3, 125.7, 125.6, 125.1, 117.7, 112.7, 109.2, 52.1.

4-(H-imidazo[1,2-*a*]pyridin-2-yl)benzonitrile (3r)^[6]

White solid, isolated yield 90%.¹H NMR (400MHz, CDCl₃): $\delta = 8.09$ (d, 1H, J = 6.8 Hz), 8.00-7.98(m, 2H), 7.89(s, 1H), 7.65-7.63(m, 2H), 7.59(d, 1H, J = 9.2 Hz), 7.18(t, 1H, J = 6.8 Hz), 6.80-6.76(m, 1H); ¹³C NMR (100MHz, CDCl₃): $\delta = 145.8$, 143.5, 138.2, 132.4, 126.2, 125.7, 125.4, 118.9, 117.7, 112.9, 110.8, 109.5.

2-(furan-2-yl)H-imidazo[1,2-a]pyridine (3s)^[4]

Gray solid, isolated yield 78%.¹H NMR (400MHz, CDCl₃): δ = 7.97(d, 1H, *J* = 6.8 Hz), 7.68(s, 1H), 7.52-7.49(m, 1H), 7.40-7.39(m, 1H), 7.15(t, 1H, *J* = 8 Hz), 6.85-6.82(m, 1H), 6.66-6.63(m, 1H), 6.44-6.43(m, 1H); ¹³C NMR (100MHz, CDCl₃): δ = 149.4, 145.4, 141.8, 137.7, 125.5, 124.8, 117.1, 112.3, 111.4, 107.7, 106.4.

2-(thiophen-2-yl)H-imidazo[1,2-a]pyridine (3t)^[4]

White solid, isolated yield 86%.¹H NMR (400MHz, CDCl₃): δ = 7.91(d, 1H, *J* = 6.8 Hz), 7.61(s, 1H), 7.49(d, 1H, *J* = 6.8 Hz), 7.37-7.36(m, 1H), 7.26-7.24(m, 1H), 7.01-6.99(m, 2H), 6.65-6.60(m, 1H); ¹³C NMR (100MHz, CDCl₃): δ = 145.1, 140.5, 137.3, 127.5, 125.2, 124.8, 124.6, 123.4, 116.9, 112.2, 107.2.

2-(pyridin-2-yl)H-imidazo[1,2-a]pyridine (3u)^[5]

White solid, isolated yield 74%.¹H NMR (400MHz, CDCl₃): δ = 8.61-8.60(m, 1H), 8.23-8.09(m, 3H), 7.75(t, 1H, *J* = 6 Hz), 7.61(d, 1H, *J* = 9.2 Hz), 7.20-7.14(m, 2H), 7.63(t, 1H, *J* = 6.8 Hz); ¹³C NMR (100MHz, CDCl₃): δ = 152.6, 149.1, 145.3, 145.2, 136.5, 125.7, 124.7, 122.4, 120.1, ¹⁰

117.4, 112.4, 110.6.

2-(thiazol-2-yl)H-imidazo[1,2-a]pyridine (3v)^[6]

Yellow solid, isolated yield 71%.¹H NMR (400MHz, CDCl₃): δ = 8.11-8.08(m, 2H), 7.83(s, 1H), 7.85(s, 1H), 7.33(s, 1H), 7.17-7.16(m, 1H), 6.79-6.75(m, 1H); ¹³C NMR (100MHz, CDCl₃): δ = 163.4, 145.3, 143.5, 140.2, 125.9, 119.1, 117.7, 113.1, 109.4.

(E)-2-styrylH-imidazo[1,2-*a*]pyridine (4a)^[6]

White solid, isolated yield 78%.¹H NMR (400MHz, CDCl₃): δ = 8.04(d, 1H, *J* = 6.4 Hz), 7.58-7.54(m, 5H), 7.35(t, 2H, *J* = 7.5 Hz), 7.26(t, 1H, *J* = 7.5 Hz), 7.17-7.13(m, 2H), 6.74(t, 1H, *J* = 6.8 Hz); ¹³C NMR (100MHz, CDCl₃): δ = 145.7, 144.1, 137.3, 130.5, 128.6, 127.7, 126.5, 125.4, 124.9, 119.9, 117.1, 112.2, 110.5.

3-methyl-2-phenylH-imidazo[1,2-a]pyridine (4b)^[6]

White solid, isolated yield 84%.¹H NMR (400MHz, CDCl₃): δ = 7.85(d, 1H, *J* = 6.8 Hz), 7.80-7.77(m, 2H), 7.62(d, 1H, *J* = 9.2 Hz), 7.47-7.43(m, 2H), 7.33(t, 1H, *J* = 8.8 Hz), 7.16-7.12(m, 1H), 6.82-6.78(m, 1H), 2.60(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ = 144.3, 142.3, 134.8, 128.4, 128.3,

127.2, 123.4, 122.7, 117.3, 115.8, 111.9, 9.5.

8-methyl-2-phenylH-imidazo[1,2-a]pyridine (4c)^[4]

White solid, isolated yield 83%.¹H NMR (400MHz, CDCl₃): δ = 7.98-7.92(m, 3H), 7.79(s, 1H), 7.43(t, 2H, *J* = 7.6 Hz), 7.34(t, 1H, *J* = 2 Hz), 6.93(t, 1H, *J* = 8.8 Hz), 6.64(t, 1H, *J* = 6.8 Hz), 2.67(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ = 146.1, 145.1, 134.1, 128.6, 127.7, 127.4, 126.1, 123.3, 123.2, 112.2, 108.5, 17.0.

7-methyl-2-phenylH-imidazo[1,2-*a*]pyridine (4d)^[3]

White solid, isolated yield 80%.¹H NMR (400MHz, CDCl₃): δ = 7.95-7.87(m, 3H), 7.69(s, 1H), 7.41(t, 2H, *J* = 7.2 Hz), 7.34(s, 1H), 7.32(t, 1H, *J* = 12 Hz), 6.53-6.51(m, 1H), 2.34(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ = 146.1, 145.5, 135,6, 133.9, 128.7, 127.8, 125.9, 124.8, 115.8, 114.9, 107.6, 21.4.

2-(4-bromophenyl)-7-methylH-imidazo[1,2-*a*]pyridine (4e)^[5]

White solid, isolated yield 78%.¹H NMR (400MHz, CDCl₃): δ = 7.89(d, 1H, *J* = 6.8 Hz), 7.75(d, 2H, *J* = 8.8 Hz), 7.67(s, 1H), 7.49(d, 2H, *J* = 8 Hz), 7.33(s, 1H), 6.56-6.54(m, 1H), 2.35(s, 3H); ¹³C NMR (100MHz,

CDCl₃): *δ* = 146.1, 144.2, 135.8, 132.9, 131.6, 127.3, 124.7, 121.5, 115.7, 115.1, 107.6, 21.3.

2-phenyl-7-(trifluoromethyl)H-imidazo[1,2-a]pyridine (4f)^[6]

White solid, isolated yield 75%.¹H NMR (400MHz, CDCl₃): $\delta = 8.45$ (s, 1H), 7.95-7.89(m, 3H), 7.69(s, 1H), 7.46-7.26(m, 4H); ¹³C NMR (100MHz, CDCl₃): $\delta = 147.7$, 145.3, 152.9, 128.8, 128.6, 126.1, 124.5, 124.4, 120.5, 120.4, 118.1, 109.2.

6-bromo-5-methyl-2-phenylH-imidazo[1,2-a]pyridine (4g)^[5]

White solid, isolated yield 61%.¹H NMR (400MHz, CDCl₃): δ = 7.90(d, 2H, *J* = 6.8 Hz), 7.64(s, 1H), 7.47-7.36(m, 3H), 7.32-7.24(m, 2H), 2.64(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ = 146.3, 133.7, 133.3, 132.8, 128.9, 128.8, 128.2, 125.9, 115.4, 107.5, 106.8, 18.5.

6,8-dibromo-5-methyl-2-phenylH-imidazo[1,2-*a*]pyridine (4h)^[5]

White solid, isolated yield 55%.¹H NMR (400MHz, CDCl₃): δ = 7.94(d, 2H, *J* = 6.8 Hz), 7.73(s, 1H), 7.57(s, 1H), 7.42-7.40(m, 2H), 7.33(d, 1H, *J* = 6 Hz) 2.66(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ = 146.9, 142.8, 132.9,

132.2, 130.5, 128.7, 128.4, 126.2, 108.7, 108.5, 106.4, 18.4.

2-(4-(methylsulfonyl)phenyl)H-imidazo[1,2-*a*]pyridine (5)^[3]

White solid, isolated yield 56%.¹H NMR (400MHz, CDCl₃): δ = 8.15-8.12(m, 3H), 8.06-8.02(m, 3H), 7.64-7.62(d, 1H, *J* = 9.2 Hz), 7.25-7.23(m, 1H), 6.85-6.82(m, 1H), 3.09(s, 3H); ¹³C NMR (100MHz, CDCl₃): δ = 145.7, 143.9, 139.1,128.9, 127.7, 127.6, 126.4, 117.6, 112.9, 109.7, 44.1.

Reference

- C. He, J. Hao, H. Xu, Y. Mo, H. Liu, J. Han and A. Lei, *Chem. Commun.*, 2012, 48, 11073
- 2. S. Santra, A. K. Bagdi, A. Majee and A. Hajra, Adv. Synth. Catal. 2013, 355, 1065.
- 3. A. K. Bagdi, M. Rahman, S, Santra, A. Majee and Alakananda Hajra, *Adv. Synth. Catal.* 2013, **355**, 1741.
- 4. D. C. Mohan, R. R. Donthiri, S, N. Rao and Ss Adimurthy, *Adv. Synth. Catal.* 2013, **355**, 2217.
- 5. Z.-J. Cai, S.-Y. Wang and S.-J. Ji, Adv. Synth. Catal. 2013, 355, 2686.
- 6. Y. Zhang, Z. Chen, W. Wu, Y. Zhang and W. Su, J. Org. Chem., 2013, 78, 12494.

Copy of ¹H NMR and ¹³C NMR ¹⁴

