Supporting Information

Novel applications of functionalized 2,1,3-benzothiadiazoles for coordination chemistry and crystal engineering

Denis A. Bashirov, Taisiya S. Sukhikh, Natalia V. Kuratieva, Elena A. Chulanova, Irina V.

4

 $C_{12}H_8N_6O_2S_2$

Yushina, Nina P. Gritsan, Sergey N. Konchenko, Andrey V. Zibarev

3 C₆H₃N₃O₂S $C_{12}H_{10}Cl_2N_6S_2Zn$ C₆H₅N₃S Empirical formula \mathbf{r}

Table S1.	Crystallographic	c data of con	npounds 1-4 .
Compound		1	2

Formula weight	151.19	438.05	181.17	332.30
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Triclinic
Space group	Pccn	C2/c	$P2_{1}/c$	<i>P</i> -1
Unit cell dimensions a [Å]	12.9346(4)	27.5548(8)	4.6171(2)	7.4742(2)
<i>b</i> [Å]	21.7846(8)	4.6491(2)	9.9885(4)	8.3487(3)
<i>c</i> [Å]	4.7923(2)	12.4548(4)	14.8728(6)	11.8518(4)
α [°]	90	90	90	82.880(2)
β[°]	90	102.699(1)	98.403(1)	79.480(2)
γ [°]	90	90	90	69.068(1)
Volume [Å ³]	1350.35(9)	1556.49(9)	678.54(5)	677.74(4)
Z	8	4	4	2
Density (calcd.) [g cm ⁻³]	1.487	1.872	1.773	1.629
F(000)	624	880	368	340
Abs. coefficient [mm ⁻¹]	0.393	2.195	0.428	0.410
Crystal size [mm ³]	0.40x0.25x0.15	0.30x0.22x0.18	0.38x0.12x0.08	0.35x0.15x0.04
$2\theta_{\text{max}}$ [°]	55.02	65.18	65.60	52.74
Index range	-16<=h<=12	-41<=h<=24	-6<=h<=6	-9<=h<=9
	28<=k<=28	7<=k<=6	9<=k<=15	10<=k<=10
	6<=1<=4	18<=l<=18	14<=l<=22	14<=1<=14
Reflections collected	9160	7745	6440	5604
Independent reflections	1546 [R(int) =	2818 [P (int) = 0.0210]	2465 [R(int) =	2754 [R(int) =
	0.0288]	2818 [K(IIII) - 0.0319]	0.0159]	0.0304]
Completness to θ [%]	99.6 %	99.7 %	99.8 %	99.4 %
Reflections, $I \ge 2\sigma(I)$	1411	2470	2142	2144
Parameters	91	113	109	200
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0352, wR2 =	R1 = 0.0250, wR2 =	R1 = 0.0302, wR2 =	R1 = 0.0360, wR2 =
	0.1017	0.0622	0.0806	0.0879
R indices (all data)	R1 = 0.0381, $wR2 =$	R1 = 0.0306, WR2 =	R1 = 0.0368, wR2 =	R1 = 0.0509, wR2 =
	0.1043	0.0644	0.0839	0.0925
GoF	1.082	1.077	1.062	1.032
Residual electron density $(\min / \max, e/Å^3)$	-0.412 / 0.437	-0.409 / 0.422	-0.173 / 0.599	-0.253 / 0.230

Fig. S1. Packing diagram of 2 showing relative arrangement of stacks.

Fig. S2. Selected structures of complex **2** optimized at the B97-D3/def2-TZVP level of theory in THF solution with different types of coordination: both ligands are coordinated by N atoms of NH_2 groups (A and B), and one ligand is coordinated by N atom of NH_2 group and another by N atom of heterocycle (C and D).

Fig. S3. Packing diagram of complex **4** viewed along *a* axis (A) and those showing relative arrangement of stacks (B and C).

Fig. S4. ORTEP plots of 1 and 3 showing 50% probability ellipsoids (H atoms are shown as circles).

4a, $\Delta H^0 = -8.5 \text{ kcal} \cdot \text{mol}^{-1}$, $\Delta G^0 = 4.1 \text{ kcal} \cdot \text{mol}^{-1}$

 $\Delta Q = 0.022e, \lambda_{max}(CT) = 552 \text{ nm}, f = 0.009$

4b, $\Delta H^0 = -9.5 \text{ kcal} \cdot \text{mol}^{-1}$, $\Delta G^0 = 3.1 \text{ kcal} \cdot \text{mol}^{-1}$ $\Delta Q = 0.016\text{e}$, $\lambda_{\text{max}}(\text{CT}) = 598 \text{ nm}$, f = 0,001

4c, $\Delta H^0 = -9.5 \text{ kcal} \cdot \text{mol}^{-1}$, $\Delta G^0 = 3.1 \text{ kcal} \cdot \text{mol}^{-1}$ $\Delta Q = 0.041 \text{e}$, $\lambda_{\text{max}}(\text{CT}) = 580 \text{ nm}$, f = 0.005

4d, $\Delta H^0 = -8.5 \text{ kcal} \cdot \text{mol}^{-1}$, $\Delta G^0 = 4.2 \text{ kcal} \cdot \text{mol}^{-1}$ $\Delta Q = 0.052e$, $\lambda_{\text{max}}(\text{CT}) = 582 \text{ nm}$, f = 0.02

Figure S5. Structures of 1 : 1 complexes between 1 and 3 (complex 4 with different relative arrangement of the units, 4a–4d) optimized at the B97-D3/def2-TZVP level and thermodynamics of complex formation (ΔH^0 , ΔG^0) in THF solution (thermodynamics in CH₂Cl₂ solution coincides within 0.1 kcal·mol⁻¹).