Supporting Information

Investigation of the Reactions of U, U^+ and U^{2+} with Ammonia:

Mechanisms and Topological Analysis

Peng Li,^a Wenxia Niu, ^b and Tao Gao ^{a*}

^a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China ^b College of Physical Science and Technology, Sichuan University, Chengdu 610065, China

Table of Contents:

1. The ELF localization domains corresponding to the lowest-energy minima and transition states of $U^{+(2+)} + NH_3$ reaction are shown in Fig. S1 and S2.

Fig. S1. ELF localization domains (η =0.70) of the lowest energy minima and transition states corresponding to the U⁺ + NH₃ reaction pathway.

Fig. S2. ELF localization domains (η =0.70) of the lowest energy minima and transition states corresponding to the U²⁺ + NH₃ reaction pathway.

2. IRC energy and Wiberg bond order along the reaction coordinate *s* calculated at the PW91/SDD levels corresponding to the $U^{+(2+)} + NH_3$ are shown in Fig. S3 and S4.

Fig. S3. IRC energy and Wiberg bond order along the reaction coordinate *s* calculated at the PW91/SDD levels corresponding to the $U^+ + NH_3$. Black solid curves are the energy and coloured curves are Wiberg bond order.

Fig. S4. IRC energy and Wiberg bond order along the reaction coordinate *s* calculated at the PW91/SDD levels corresponding to the U^{2+} + NH₃. Black solid curves are the energy and coloured curves are Wiberg bond order.

Ab Initio molecular dynamics simulation of the product H₂UNH.
Fig. S5. The RMSD at different temperatures for the product H₂UNH.

1. Fig. S1 and Fig. S2

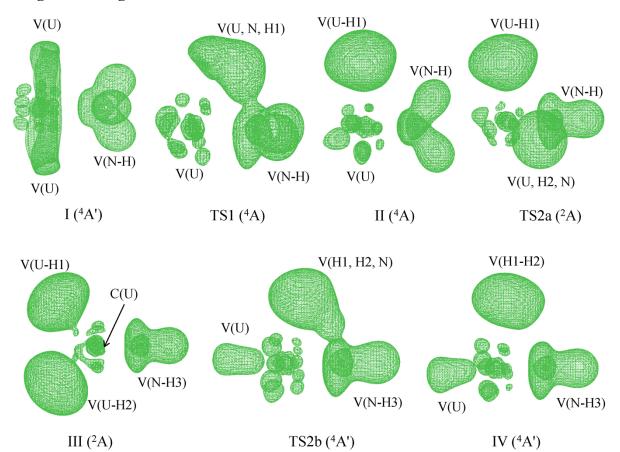


Fig. S1 ELF localization domains (η =0.70) of the lowest energy minima and transition states corresponding to the U⁺ + NH₃ reaction pathway.

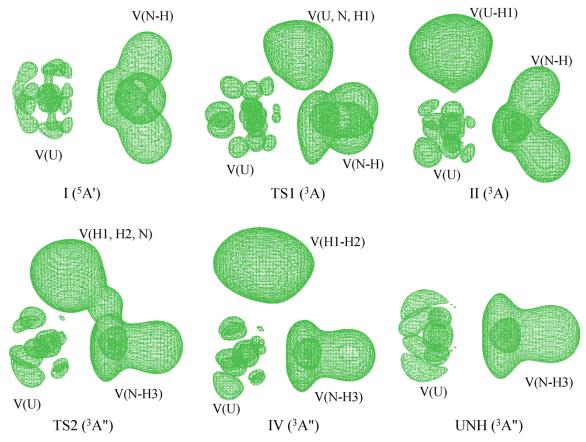
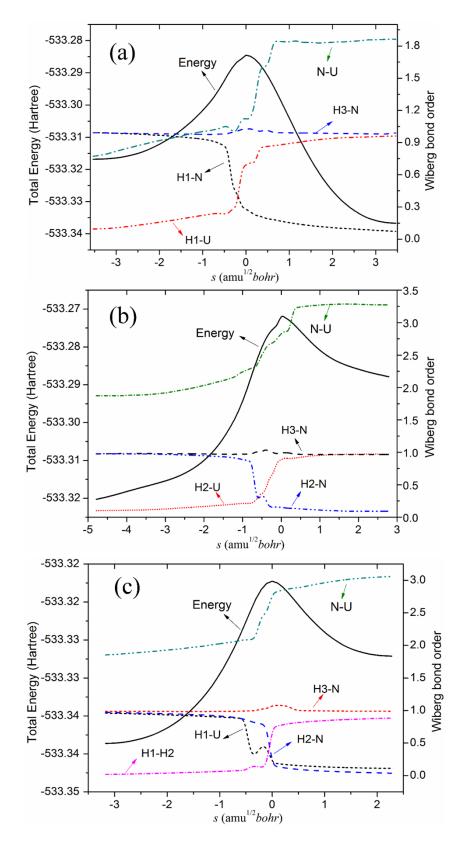
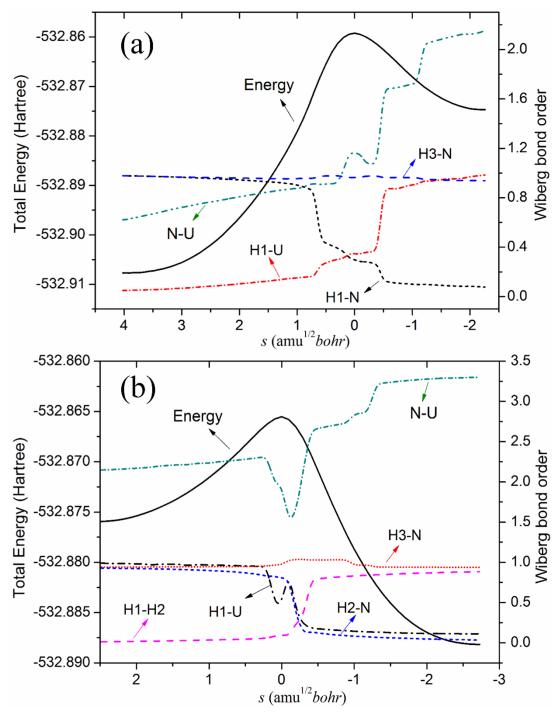




Fig. S2 ELF localization domains (η =0.70) of the lowest energy minima and transition states corresponding to the U²⁺ + NH₃ reaction pathway.

2. Fig. S3 and Fig. S4

Fig. S3 IRC energy and Wiberg bond order along the reaction coordinate *s* calculated at the PW91/SDD levels corresponding to the U⁺ + NH₃. Black solid curves are the energy and coloured curves are wiberg bond order. (a) U⁺-NH₃ \rightarrow TS1 \rightarrow HUNH₂⁺; (b) HUNH₂⁺ \rightarrow TS2a \rightarrow HNUH₂⁺; (c) HUNH₂⁺ \rightarrow TS2b \rightarrow H₂-UNH⁺.

Fig. S4 IRC energy and Wiberg bond order along the reaction coordinate *s* calculated at the PW91/SDD levels corresponding to the U²⁺ + NH₃. Black solid curves are the energy and coloured curves are wiberg bond order. (a) U²⁺-NH₃ \rightarrow TS1 \rightarrow HUNH₂²⁺; (b) HUNH₂²⁺ \rightarrow TS2 \rightarrow H₂-UNH²⁺.

3. Ab Initio molecular dynamics simulation of the product H₂UNH.

We performed *ab Initio* molecular dynamics simulation to confirm the thermal stability of the product H_2 UNH. Simulations are carried out for almost 5 ps using the BOMD method in Gaussian03. Our result indicates that the H_2 UNH is stabilized. Using the dynamics simulations results, we plotted the root mean square displacement (RMSD) through time at different temperature (300 and 500K). The results are shown in the following figures. Our MD runs indicate that the H_2 UNH structure keeps its identity at both room temperature (300 K) and high temperature (500 K).

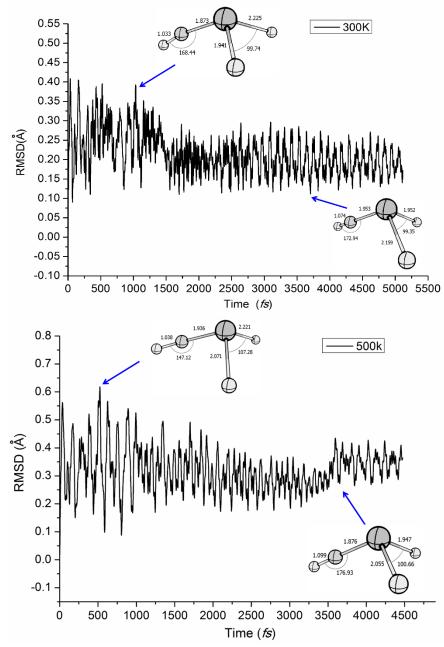


Fig. S5. The RMSD at different temperatures for the product H₂UNH.