Supplementary Material

Coordination assemblies of the M^{II} -tm/bpt (M = Zn/Cd/Co/Ni)

mixed-ligand system: positional isomeric effect, structural

diversification and properties

Manuscript Authors: Fu-Ping Huang,^{a,b} Peng-Fei Yao,^a Wei Luo,^a Hai-Ye Li,^a Qing Yu,^a He-Dong Bian, ^{*a} Shi-Ping Yan,^{*b}

^a Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (School of Chemistry and Pharmacy, Guangxi Normal University), Ministry of Education of China, Guilin, 541004, P. R. China.

^b Department of Chemistry, Nankai University, Tianjin 300071, PR China.

^{*} Corresponding author.: H.D. gxunchem@163.com; S. P. yansp@nankai.edu.cn;

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
6				
N3—H3…O2vi	0.87	1.92	2.793 (13)	176
O7—H7A…O2	0.86	1.88	2.663 (9)	151
O7—H7B…O11vii	0.85	2.48	2.967 (14)	117
O7—H7B…O10viii	0.85	2.17	2.993 (18)	150
N8—H8⋯O9	0.87	2.02	2.717 (13)	137
O8—H8A…O6ix	0.85	2.00	2.761 (15)	148
O8—H8B…O10viii	0.85	2.01	2.84 (2)	168
O10—H10B…N7viii	0.86	2.14	3.00 (2)	176
O10—H10C⋯O2x	0.84	1.90	2.740 (18)	175
O11—H11A…O10xi	0.85	2.16	3.01 (12)	177
O11—H11B…N4ix	0.84	2.17	3.000 (14)	175
Symmetry codes: (vi) $-x+2$, $-y$, $-z+2$; (vii) x, $y-1$, z; (viii) $-x+1$, $-y+1$, $-z+1$; (ix) x,				
<i>y</i> +1, <i>z</i> -1; (x) <i>x</i> -1, <i>y</i> +1, <i>z</i> ; (xi) <i>x</i> +1, <i>y</i> , <i>z</i> .				

Table S1. Selected Hydrogen-bond Geometry (Å) for complex 6

Fig **S1**. Show the 3-D packing drawing of **6**.

Fig S2. Measured and calculated powder X-ray diffraction (PXRD) pattern of 1.

Fig S3. Measured and calculated powder X-ray diffraction (PXRD) pattern of 2.

Fig S4. Measured and calculated powder X-ray diffraction (PXRD) pattern of 3.

Fig S5. Measured and calculated powder X-ray diffraction (PXRD) pattern of 4.

Fig S6. Measured and calculated powder X-ray diffraction (PXRD) pattern of 5.

Fig S7. Measured and calculated powder X-ray diffraction (PXRD) pattern of 6.

Fig **S8**. Plots of zero-field cooled magnetization (ZFC) and field-cooled magnetization (FC) and in a field of 5 Oe for 1 using a SQUID.