Supporting Information

Synthesis of Indole-Based Functional Polymers with Well-Defined Structures via Catalyst-free C-N Coupling Reaction

Guanjun Chang^{*,1}, Li Yang¹, Shenye Liu², Xuan Luo², Runxiong Lin³, Lin Zhang²

¹ State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials & School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.

² Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China.

³ Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao, 266042, China.

Tel: +86-13990158034; *E-mail*: gjchang@mail.ustc.edu.cn

Table of contents

I. Synthesis of 3,3'-diindolylmethane	S3
II. Optical properties of model compounds	S4
III. IR spectra of model compounds (3-5), PMDINs and cross-linked	PMDIN-3
film	
IV. The SEM of the dip coated PMDIN-3 film	S9
V. Copies of ¹ H and ¹³ C NMR spectra of 3,3'-diindolylmethane, model compo	unds (3-5),
and PMDINs	S10

I. Synthesis of 3,3'-diindolylmethane^[1]

To a mixture of indole (10 mmol) and formaldehyde (5 mmol) was added the bentonitic clay (5 g). The reaction mixture was IR irradiated with a commercial IR lamp (250 W), according to the methodology reported by Pool and Teuben, ^[2] for 15 minutes (after this reaction time no changes were detected by thin layer chromatography), and the temperature reached during the reaction was 180 °C. Then, to the produced reaction mixture a 1 : 1 water–methanol mixture was added for recrystallization purpose.

¹H-NMR (600 MHz, DMSO-*d*₆): $\delta = 4.14$ (s, 2H), 6.90 (t, J = 10.2 Hz, 12.0 Hz, 2H), 7.02 (t, J = 10.8 Hz, 12.0 Hz, 2H), 7.13 (d, J = 2.4 Hz, 2H), 7.31 (d, J = 12.0 Hz, 2H), 7.52 (d, J = 12.0 Hz, 2H), 10.73 (s, 2H) ppm; ¹³C-NMR (150 MHz, DMSO-*d*₆): $\delta = 20.9$, 111.3, 114.2, 118.0, 118.6, 120.7, 122.7, 127.2, 136.4 ppm; MS (ESI) *m/z*: 246 [M]⁺; Anal.Calcd for C₁₇H₁₄N₂: C, 82.90; H, 5.73; N, 11.37; Found: C, 81.75, H, 5.77, N, 11.04.

Scheme S1. Synthesis of 3,3'-diindolylmethane

- G. Penieres-Carrillo, J. G. García-Estrada, J. L. Gutiérrez-Ramírez and C. Alvarez-Toledano. Green Chemistry, 2003, 5, 337.
- [2] G. Pool and J. Teuben, ACS Symp. Ser., 1987, 357, 30.

II. Optical properties of model compounds

Figure S1. UV spectra of model compounds 3-5 in NMP solutions. Solution concentration: 10^{-5} M.

Figure S2. Fluorescence spectra of **3**, **4** and **5** in NMP ($\lambda_{exc} = 340$ nm, 340 nm, 320 nm, respectively; excitation and emission slits = 5.0 nm and 2.5 nm, respectively).

III. IR spectra of model compounds (3-5) and PMDINs

Figure S3. The IR spectrum of model compound 3.

Figure S4. The IR spectrum of model compound 4.

Figure S5. The IR spectrum of model compound 5.

Figure S6. The IR spectrum of polymer PMDIN-1.

Figure S7. The IR spectrum of polymer PMDIN-2.

Figure S8. The IR spectrum of polymer PMDIN-3.

Figure S9. The IR spectrum of polymer cross-linked PMDIN-3.

IV. The SEM of the dip coated PMDIN-3 film

Figure S10. The SEM of the dip coated PMDIN-3 film.

V. Copies of ¹H and ¹³C NMR spectra of 3,3'-diindolylmethane, model compounds (3-5) and PMDINs

