Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

ESI to accompany

Factors controlling the photoresponse of copper(I) diimine dyes containing hole-transporting dendrons in dye-sensitized solar cells: substituent and solvent effects

Sven Y. Brauchli,^{*a*} Biljana Bozic-Weber,^{*a*} Edwin C. Constable,^{**a*} Nik Hostettler,^{*a*} Catherine E. Housecroft^{**a*} and Jennifer A. Zampese^{*a*}

Fig. S1. Cross-section SEM micrograph of a commercial Solaronix electrode. Uniform and densely packed scattering and transparent layers with thicknesses of \sim 9 and 3 µm are observed, respectively.

Experimental Section for ligand synthesis

General

Bis(4-methoxyphenyl)amine was purchased from Sigma-Aldrich and was used as received. 4,4'-Bis(4-bromophenyl)-6,6'-dimethyl-2,2'-bipyridine,¹ 4,4'-bis(N,N-

bis(4-methoxyphenyl)amino)diphenylamine,¹ 4,4'-bis(4-bromophenyl)-6,6'-di*n*-butyl-2,2'-bipyridine,² 4,4'-bis(4-bromophenyl)-6,6'-diisobutyl-2,2'bipyridine,² 4,4'-bis(4-bromophenyl)-6,6'-di-*n*-hexyl-2,2'-bipyridine,² and 4,4'bis(4-bromophenyl)-6,6'-diphenyl-2,2'-bipyridine² were prepared as previously reported.

N-[2-oxoethyl-2-naphthyl]pyridine-1-ium iodide

2-Naphthylmethylketone (12.0 g, 70.0 mmol) and iodine (17.3 mL, 17.8 g, 70.0 mmol) were heated in pyridine (100 mL) under reflux for 1h. The resulting orange solid was separated by filtration, washed with cold Et_2O and dried under vacuum. The product was isolated as an orange solid (20.2 g, 53.8 mmol, 76.7%). The crude material was used in the next step without purification. ¹H NMR (500 MHz, CD₃CN) δ /ppm: 8.77 (m, 1H, H^{B1}), 8.74 (m, 2H, H^{A2}), 8.65 (m, 1H, H^{A4}), 8.16 (m, 3H, H^{A3+B3}), 8.06 (m, 3H, H^{B4+B5+B8}), 7.75 (m, 1H, H^{B7}), 7.70 (m, 1H, H^{B6}), 6.42 (s, 2H, H^{CH2}). ¹³C NMR (126 MHz, CD₃CN) δ /ppm: 190.6 (C^{C=0}), 147.7 (C^{A4}), 147.1 (C^{A2}), 137.1 (C^{B4a/B8a}), 133.2 (C^{B4a/B8a}), 131.7 (C^{B1}), 130.6 (C^{B3+B7}), 130.0 (C^{B4}), 129.0 (C^{A3}), 128.8 (C^{B8}), 128.5 (C^{B6}), 123.9 (C^{B2+B5}), 67.3 (C^{CH2}).

4,4'-Bis(4-bromophenyl)-6,6'-di-2-naphthyl-2,2'-bipyridine

N-[2-Oxoethyl-2-naphthyl]pyridine-1-ium iodide (5.10 g, **13**.6 mmol) was dissolved in EtOH (60 mL) under vigorous stirring. (1E,5E)-1,6-Bis(4bromophenyl)hexa-1,5-diene-3,4-dione (2.85 g, 6.79 mmol) and NH₄OAc (5.23 g, 67. mmol) were added followed by EtOH (30 mL), propan-2-ol (100 mL) and toluene (150 mL). The reaction mixture was heated at reflux for 1 d and was then allowed to cool r.t. while being stirred. The precipitate was collected by filtration and washed with cold EtOH. The product was recrystallized twice from EtOH, then from MeOH. The product was isolated as an off-white solid (1.77 g, 2.46 mmol, 36.3%). Decomp. > 322 °C. ¹H NMR (500 MHz, TFA-d₁) δ/ppm: 8.68 $(d, l = 1.8 \text{ Hz}, 2H, H^{A3}), 8.66 (d, l = 1.8 \text{ Hz}, 2H, H^{A5}), 8.41 (d, l = 2.1 \text{ Hz}, 2H, H^{C1}),$ 8.06 (d, J = 8.6 Hz, 2H, H^{C4}), 7.89 (overlapping d, 4H, H^{C5+C8}), 7.83 (dd, J = 8.7, 2.0 Hz, 2H, H^{C3}), 7.80 (m, 4H, H^{B2}), 7.75 (m, 4H, H^{B3}), 7.63 (m, 2H, H^{C6/C7}), 7.58 (m, 2H, H^{C6/C7}). ¹³C NMR (126 MHz, TFA-d₁) δ/ppm: 162.0 (C^{B4}), 159.0 (C^{A6}), 144.6 (C^{A4}), **13**7.9 (C^{C4a/C8a}), **13**5.8 (C^{B3}), **13**5.2 (C^{C4a/C8a}), **13**4.1 (C^{A4}), **13**3.0 (C^{C4}), **132**.2 (C^{C1+C6/C7}), **13**1.7 (C^{B1}), **13**1.2 (C^{B2}), **130**.9 (C^{C5/C8}), **130**.5 (C^{C6/C7}), **130**.0 $(C^{C5/C8})$, 128.4 (C^{B2}) , 126.9 (C^{A5}) , 126.0 (C^{A3}) , 124.3 (C^{C3}) . IR (v/cm^{-1}) : 3051 (w), 3018 (w), 2970 (w), 1589 (m), 1574 (m), 1542 (s), 1489 (m), 1405 (m), 1379 (m), 1075 (m), 1007 (m), 863 (m), 812 (s), 785 (m), 775 (s), 757 (s), 732 (s), 718 (m), 570 (m), 470 (s). ESI MS (*m/z*): 719.1 [M+H]⁺ (calc. 719.1). UV-VIS (CH₂Cl₂, $1.0 \times 10^{-5} \text{ mol dm}^{-3}$): $\lambda/\text{nm} 237$ ($\epsilon / \text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1} 73500$), 263 (105300), sh 320 (24300), 350 sh (9900). UV-VIS (CH₂Cl₂ + 1%TFA, 1.0×10^{-5} mol dm⁻³): λ / nm 227 (ε / dm³ mol⁻¹ cm⁻¹ 81700), 262 (61600), 311 (43400), 400 sh (15300). Found: C 68.93, H 3.62, N 4.01; C₄₂H₂₆Br₂N₂·1/₂H₂O requires C 69.34, H 3.74, N 3.85%.

Compound 2

4,4'-Bis(4-bromophenyl)-6,6'-di-*n*-butyl-2,2'-bipyridine (422 mg, 0.73 mmol) and bis(4-methoxyphenyl)amine (376 mg, 1.61 mmol) were suspended in dry toluene (40 mL) under argon. NaO^tBu (231 mg, 2.41 mmol) was added. A 1M toluene solution of P^tBu_3 (29.2 µL, 0.029 mmol, 4.0 mol%) was added to a suspension of Pd(bda)₂ (16.8 mg, 0.029 mmol, 4.0 mol%) in dry toluene (15 mL) and the active catalyst suspension was added to the reaction mixture. The mixture was heated at 100°C for 16 h, after which time it was filtered hot. The solvent of the filtrate was removed and the resulting solid was boiled in EtOH (100 mL) until a homogeneous suspension was obtained. The solid was filtered off hot and washed with diethyl ether (30 mL). Compound **2** was isolated as yellow-green solid (563 mg, 0.64 mmol, 88 %). Mp. 165 °C. ¹H NMR (500 MHz, CDCl₃) δ /ppm: 8.44 (d, *J* = 1.6 Hz, 2H, H^{A3}), 7.60 (d, *J* = 8.7 Hz, 4H, H^{B2}), 7.31 (d, / = 1.7 Hz, 2H, H^{A5}), 7.11 (d, / = 8.9 Hz, 8H, H^{C2}), 7.01 (d, / = 8.7 Hz, 4H, H^{B3}), 6.86 (d, J = 8.9 Hz, 8H, H^{C3}), 3.82 (s, 12H, OMe), 2.90 (t, J = 7.8 Hz, 4H, H^a), 1.85 – 1.78 (m, 4H, H^b), 1.45 (m, 4H, H^c), 0.97 (t, *J* = 7.4 Hz, 6H, H^d). ¹³C NMR (126 MHz, CDCl₃) δ/ppm: 162.3 (C^{A6}), 156.8 (C^{A2}), 156.3 (C^{C4}), 149.5 (C^{B4}), 148.8 (C^{B1}), 140.7 (C^{C1}), **13**0.4 (C^{A4}), 127.8 (C^{B2}), 127.1 (C^{C2}), 120.2 (C^{B3}), 119.6 (CA5), 116.1 (CA3), 114.9 (CC3), 55.7 (COMe), 38.4 (Ca), 32.2 (Cb), 22.7 (Cc), 14.2 (C^d). IR ($\tilde{\nu}$ /cm⁻¹): 3036 (w), 3002 (w), 2952 (w), 2926 (w), 2855 (w), 2832 (w), 1588 (m), 1501 (s), 1461 (m), 1285 (m), 1238 (s), 1178 (m), 1105 (m), 1029 (s), 823 (s), 780 (m), 662 (m), 574 (m), 527 (m). ESI MS (m/z): 875.5 [M+H]⁺ (calc. 875.5). UV-VIS (CH₂Cl₂, 1.0×10^{-5} mol dm⁻³): λ_{max} /nm 240 sh (ϵ /dm³ mol⁻¹ cm⁻¹ 48600), 296 (41400), 359 (47500). Found: C, 78.08; H, 6.54; N, 6.31; C₅₈H₅₈N₄O₄·H₂O requires C, 78.00; H, 6.77; N, 6.27.

Compound 3

Compound **3** was prepared and purified in the same manner as **2** starting with 4,4'-bis(4-bromophenyl)-6,6'-di-*iso*-

butyl-2,2'-bipyridine (400 mg, 0.69 mmol), bis(4-methoxyphenyl)amine (356 mg, 1.52 mmol) and NaO^tBu (219 mg, 2.28 mmol) in dry toluene (60 mL). For

the preparation of the catalyst suspension, Pd(bda)₂ (15.9 mg, 0.027 mmol, 4.0 mol%), dry toluene (25 mL) and 1M toluene solution of P^tBu₃ (27.7 µL, 0.027 mmol, 4.0 mol%) were used. The reaction time at 100°C was 16 h. Compound 3 was isolated as yellow-green solid (520 mg, 0.59 mmol, 86 %). Mp. 238 °C. ¹H NMR (500 MHz, CDCl₃) δ /ppm: 8.46 (d, *J* = 1.3 Hz, 2H, H^{A3}), 7.60 (d, *J* = 8.8 Hz, 4H, H^{B2}), 7.28 (d, *J* = 1.6 Hz, 2H, H^{A5}), 7.12 (d, *J* = 9.0 Hz, 8H, H^{C2}), 7.02 (d, *J* = 8.8 Hz, 4H, H^{B3}), 6.87 (d, J = 9.0 Hz, 8H, H^{C3}), 3.82 (s, 12H, H^{OMe}), 2.76 (d, J = 7.2 Hz, 4H, H^a), 2.26 (m, 2H, H^b), 0.99 (d, I = 6.6 Hz, 12H, H^c). ¹³C NMR (126 MHz, CDCl₃) δ/ppm: 161.3 (C^{A6}), 156.8 (C^{A2}), 156.3 (C^{C4}), 149.6 (C^{B4}), 148.6 (C^{B1}), 140.7 (C^{C1}), **13**0.4 (C^{A4}), 127.8 (C^{B2}), 127.1 (C^{C2}), 120.4 (C^{A5}), 120.2 (C^{B3}), 116.0 (C^{A3}), 114.9 (C^{C3}) , 55.7 (C^{OMe}) , 47.9 (C^{a}) , 29.2 (C^{b}) , 22.7 (C^{c}) . IR $(\tilde{\nu}/cm^{-1})$: 3063 (w), 3033 (w), 3003 (w), 2950 (w), 2926 (w), 2899 (w), 2866 (w), 2831 (w), 1587 (m), 1502 (s), **13**19 (m), 1240 (s), 1181 (m), 1166 (m), 1029 (m), 825 (s), 661 (m), 592 (m), 573 (m). ESI MS (m/z): 875.6 [M+H]⁺ (calc. 875.5). UV-VIS (CH₂Cl₂, 1.0 × 10⁻ ⁵ mol dm⁻³): λ_{max}/nm 240 sh (ϵ/dm^3 mol⁻¹ cm⁻¹ 48500), 296 (40400), 360 (45300). Found: C, 78.29; H, 6.63; N, 6.15; C₅₈H₅₈N₄O₄·H₂O requires C, 78.00; H, 6.77; N, 6.27.

Compound 4

Compound **4** was prepared and purified in the same manner as **2** starting with 4,4'-bis(4-bromophenyl)-6,6'-di-*n*-hexyl-2,2'-bipyridine (482 mg, 0.76 mmol), bis(4-methoxyphenyl)amine (391 mg, 1.67 mmol) and NaO^tBu (241 mg, 2.51 mmol) in dry toluene (50 mL). For the

preparation of the catalyst suspension one Pd(bda)₂ (17.5 mg, 0.030 mmol, 4.0 mol%), dry toluene (15 mL) and 1M toluene solution of P^{*t*}Bu₃ (30.4 μ L, 0.030 mmol, 4.0 mol%) were used. Reaction time at 100°C was 16 h. Compound **4** was isolated as yellow-green solid (608 mg, 0.65 mmol, 86 %). Mp. 179 °C. ¹H NMR

(500 MHz, CDCl₃) δ/ppm: 8.44 (d, J = 1.7 Hz, 2H, H^{A3}), 7.60 (d, J = 8.8 Hz, 4H, H^{B2}), 7.31 (d, J = 1.7 Hz, 2H, H^{A5}), 7.11 (d, J = 8.9 Hz, 8H, H^{C2}), 7.01 (d, J = 8.8 Hz, 4H, H^{B3}), 6.87 (d, J = 9.0 Hz, 8H, H^{C3}), 3.82 (s, 12H, H^{OMe}), 2.89 (t, J = 7.8 Hz, 4H, H^a), 1.83 (m, 4H, H^b), 1.42 (m, 4H, H^c), 1.34 (m, 8H, H^{d+e}), 0.88 (t, J = 7.0 Hz, 6H, H^f). ¹³C NMR (126 MHz, CDCl₃) δ/ppm: 162.4 (C^{A6}), 156.8 (C^{A2}), 156.3 (C^{C4}), 149.5 (C^{B4}), 148.9 (C^{B1}), 140.7 (C^{C1}), **13**0.4 (C^{A4}), 127.8 (C^{B2}), 127.0 (C^{C2}), 120.2 (C^{B3}), 119.6 (C^{A5}), 116.1 (C^{A3}), 114.9 (C^{C3}), 55.7 (C^{OMe}), 38.7 (C^a), 32.0 (C^{d/e}), 30.0 (C^b), 29.3 (C^c), 22.8 (C^{d/e}), 14.3 (C^f). IR ($\tilde{\nu}$ /cm⁻¹): 3036 (w), 2997 (w), 2950 (w), 2921 (w), 2851 (w), 2827 (w), 1591 (m), 1504 (s), 1461 (m), 1439 (m), **13**21 (m), 1291 (m), 1239 (s), 1194 (m), 1167 (m), 1038 (m), 826 (s), 660 (m), 597 (m), 571 (m), 530 (m). ESI MS (m/z): 931.6 [M+H]⁺ (calc. 931.5). UV-VIS (CH₂Cl₂, 1.0 × 10⁻⁵ mol dm⁻³): λ_{abs}/nm 240 sh (ε /dm³ mol⁻¹ cm⁻¹ 47300), 297 (41100), 359 (46600). Found: C, 77.22; H, 6.91; N, 5.99; C₆₂H₆₆N₄O₄·2H₂O requires C, 76.99; H, 7.29; N, 5.79.

Compound 5

Compound **5** was prepared and purified in the same manner as **2** starting with 4,4'-bis(4-bromophenyl)-6,6'-diphenyl-

2,2'-bipyridine (432 mg, 0.70 mmol), bis(4-methoxyphenyl)amine (359 mg, 1.54 mmol) and NaO^tBu (221 mg, 2.30 mmol) in dry toluene (50 mL). For the

preparation of the catalyst suspension, $Pd(bda)_2$ (16.1 mg, 0.028 mmol, 4.0 mol%), dry toluene (15 mL) and 1M toluene solution of P^tBu_3 (29.7 µL, 0.028 mmol, 4.0 mol%) were used. The reaction time at 100°C was 16 h. Compound **5** was isolated as yellow-green solid (552 mg, 0.60 mmol, 86 %). Decomp. >172 °C. ¹H NMR (500 MHz, CDCl₃) δ /ppm: 8.82 (d, *J* = 1.4 Hz, 2H, H^{A3}), 8.22 (d, *J* = 7.2 Hz, 4H, H^{D2}), 7.95 (d, *J* = 1.4 Hz, 2H, H^{A5}), 7.69 (d, *J* = 8.8 Hz, 4H, H^{B2}), 7.54 (m, 4H, H^{D3}), 7.45 (m, 2H, H^{D4}), 7.15 (d, *J* = 8.9 Hz, 8H, H^{C2}), 7.06 (d, *J* = 8.7 Hz, 4H, H^{B3}), 6.89 (d, *J* = 9.0 Hz, 8H, H^{C3}), 3.83 (s, 12H, H^{OMe}). ¹³C NMR (126 MHz, CDCl₃)

 δ /ppm: 157.0 (C^{A6}), 156.7 (C^{A2}), 156.4 (C^{C4}), 149.8 (C^{B4}), 149.7 (C^{B1}), 140.6 (C^{C1}), 140.0 (C^{D1}), **13**0.2 (C^{A4}), 128.8 (C^{D4}), 128.4 (C^{D3}), 127.9 (C^{B2}), 127.2 (C^{D2}), 127.2 (C^{C2}), 120.1 (C^{B3}), 117.8 (C^{A5}), 117.2 (C^{A3}), 115.0 (C^{C3}), 55.7 (C^{OMe}). IR ($\tilde{\nu}$ /cm⁻¹): 3033 (w), 2952 (w), 2929 (w), 2903 (w), 2832 (w), 1590 (m), 1503 (s), 1462 (m), 1441 (m), 1239 (s), 1194 (m), 1180 (m), 1165 (m), 1032 (m), 824 (m), 774 (m), 688 (m), 660 (m), 576 (m), 537 (m). ESI MS (*m*/*z*): 915.5 [M+H]⁺ (calc. 915.4). UV-VIS (CH₂Cl₂, 1.0 × 10⁻⁵ mol dm⁻³): λ_{max} /nm 254 (ε/dm³ mol⁻¹ cm⁻¹ 60500), 290 sh (44100), 369 (37300). Found: C, 78.08; H, 5.36; N, 5.88; C₆₂H₅₀N₄O₄·H₂O requires C, 78.29; H, 5.72; N, 5.89.

Compound 6

Compound **6** was prepared and purified in the same manner as **2** starting with 4,4'-bis(4bromophenyl)-6,6'-di(naphthalen-2yl)-2,2'-bipyridine (460 mg, 0.64 mmol), bis(4-methoxyphenyl)amine (330 mg, 1.41 mmol) and NaO^tBu (203 mg, 2.11 mmol) in dry toluene

(70 mL). For the preparation of the catalyst suspension, Pd(bda)₂ (14.7 mg, 0.026 mmol, 4.0 mol%), dry toluene (10 mL) and 1M toluene solution of P^tBu₃ (25.6 µL, 0.026 mmol, 4.0 mol%) were used. The reaction time at 100°C was 24 h. Compound **6** was isolated as yellow-green solid (393 mg, 0.39 mmol, 60%). Decomp. >320 °C. ¹H NMR (500 MHz, CDCl₃) δ /ppm: 8.89 (d, *J* = 1.5 Hz, 2H, H^{A3}), 8.65 (m, 2H, H^{D1}), 8.42 (dd, *J* = 8.6, 1.7 Hz, 2H, H^{D3}), 8.11 (d, *J* = 1.6 Hz, 2H, H^{A5}), 8.01 (m, 4H, H^{D4+D5/D8}), 7.91 (m, 2H, H^{D5/D8}), 7.75 (d, *J* = 8.8 Hz, 4H, H^{B2}), 7.53 (m, 4H, H^{D6+D7}), 7.16 (d, *J* = 9.0 Hz, 8H, H^{C2}), 7.09 (d, *J* = 8.8 Hz, 4H, H^{B3}), 6.89 (d, *J* = 9.0 Hz, 8H, H^{C3}), 3.83 (s, 12H, H^{OMe}). ¹³C NMR (126 MHz, CDCl₃) δ /ppm: 157.0 (C^{A6}), 156.9 (C^{A2}), 156.4 (C^{C4}), 149.9 (C^{B4}), 149.8 (C^{B1}), 140.6 (C^{C1}), **13**7.4 (C^{D2}),

133.8 (C^{D4a}), **13**3.7 (C^{D8a}), **13**0.2 (C^{A4}), 128.9 (C^{D4/D5/D8}), 128.5 (C^{D4/D5/D8}), 128.0 (C^{B2}), 127.9 (C^{D5/D8}), 127.2 (C^{C2}), 126.6 (C^{D6/D7}), 126.5 (C^{D1}), 126.4 (C^{D6/D7}), 125.2 (C^{D3}), 120.2 (C^{B3}), 118.2 (C^{A5}), 117.4 (C^{A3}), 115.0 (C^{C3}), 55.7 (C^{OMe}). IR ($\tilde{\nu}$ /cm⁻¹): 3059 (w), 3038 (w), 2999 (w), 2950 (w), 2929 (w), 2905 (w), 2830 (w), 1587 (m), 1502 (s), 1463 (m), 1439 (m), 1283 (m), 1239 (s), 1180 (m), 1035 (m), 820 (s), 755 (m), 575 (m), 533 (m), 476 (m). ESI MS (m/z): 1015.5 [M+H]⁺ (calc. 1015.4). UV-VIS (CH₂Cl₂, 1.0 × 10⁻⁵ mol dm⁻³): λ_{abs} /nm 234 (ϵ /dm³ mol⁻¹ cm⁻¹ 84000), 255 (82900), 297 (55400), 370 (36500). Found: C, 79.28; H, 5.30; N, 5.47; C₇₀H₅₄N₄O₄·2.5H₂O requires C, 79.30; H, 5.61; N, 5.28.

Compound 8

4,4'-Bis(4-bromophenyl)-6,6'-di-*n*-butyl-2,2'-bipyridine (69.9 mg, 0.12 mmol), 4,4'-bis(N,N-bis(4-methoxyphenyl)amino)diphenylamine (166 mg, 0.26 mmol) and NaO^tBu (63.9 mg, 0.67 mmol) were suspended in in dry toluene (30 mL). A 1M solution of P^tBu₃ in toluene (10.0 μ L, 0.012 mmol, 10 mol%) was added to a suspension of Pd(bda)₂ (6.95 mg, 0.012 mmol, 10 mol%) in dry toluene (10 mL). The freshly prepared catalyst suspension was added to the reaction mixture which was then heated to 100°C for 16 h. The reaction mixture was filtered hot to remove insoluble solids. The solvent was removed and the resulting solid was boiled in EtOH until a homogeneous suspension was obtained. After filtration compound **8** was isolated as yellow-green solid (143 mg, 85.9 μmol, 71 %). Decomp. > 305 °C. ¹H NMR (500 MHz, CDCl₃) δ/ppm: 8.46 (d, *J* = 1.7 Hz, 2H, H^{A3}), 7.62 (d, *J* = 8.8 Hz, 4H, H^{B2}), 7.32 (d, *J* = 1.7 Hz, 2H, H^{A5}), 7.11 (d, *J* = 8.7 Hz, 4H, H^{B3}), 7.07 (d, *J* = 8.9 Hz, 16H, H^{D2}), 7.00 (d, *J* = 8.9 Hz, 8H, H^{C2}), 6.90 (d, *J* = 8.9 Hz, 8H, H^{C3}), 6.83 (d, *J* = 9.0 Hz, 16H, H^{D3}), 3.80 (s, 24H, H^{OMe}), 2.90 (t, *J* = 7.8 Hz, 4H, H^a), 1.82 (m, 4H, H^b), 1.54–1.40 (m, 4H, H^c), 0.98 (t, *J* = 7.3 Hz, 6H, H^d). ¹³C NMR (126 MHz, CDCl₃, 25°C, TMS) δ/ppm: 162.3 (C^{A6}), 156.8 (C^{A2}), 155.7 (C^{D4}), 149.2 (C^{B4}), 148.8 (C^{B1}), 144.8 (C^{C4}), 141.4 (C^{D1}), 140.5 (C^{C1}), **13**0.7 (C^{A4}), 127.8 (C^{B2}), 126.2 (C^{D2+C2}), 122.3 (C^{C3}), 120.9 (C^{B3}), 119.6 (C^{A5}), 116.1 (C^{A3}), 114.8 (C^{D3}), 55.6 (C^{OMe}), 38.5 (C^a), 32.2 (C^b), 22.7 (C^c), 14.2 (C^d). IR ($\tilde{\nu}$ /cm⁻¹): 3038 (w), 2997 (w), 2929 (w), 2833 (w), 1591 (m), 1499 (s), 1238 (s), 1038 (m), 825 (s), 574 (m), 527 (m). ESI MS (*m*/*z*): 832.3 [M+2H]²⁺, (calc. 832.4). UV-VIS (CH₂Cl₂, 1.0 × 10⁻⁵ mol dm⁻³): λ_{max} /nm 226 (ϵ /dm³ mol⁻¹ cm⁻¹ 92100), 307 (87600), 343 (73800). Found: C, 77.25; H, 5.95; N, 6.66; C₁₁₀H₁₀₂N₈O₈·2H₂O requires C, 77.71; H, 6.28; N, 6.59.

Compound 9

Compound **9** was prepared and purified in the same manner as **8** starting with 4,4'-bis(4-bromophenyl)-6,6'-di-isobutyl-2,2'-bipyridine (196 mg, 0.34 mmol), 4,4'-bis(N,N-bis(4-methoxyphenyl)amino)diphenylamine (466 mg, 0.75 mmol) and NaO^tBu (185 mg, 1.87 mmol) in dry toluene (60 mL). For the preparation of

the catalyst suspension, Pd(bda)₂ (19.5 mg, 0.034 mmol, 10 mol%), dry toluene (20 mL) and 1M toluene solution of P^tBu_3 (34.0 μ L, 0.034 mmol, 10 mol%) were used. The reaction time at 100°C was 16 h. Compound 9 was isolated as yellowgreen solid (382 mg, 0.23 mmol, 68 %). Decomp. > 340 °C. ¹H NMR (500 MHz, $CDCl_3$) δ /ppm: 8.46 (d, J = 1.6 Hz, 2H, H^{A3}), 7.62 (d, J = 8.7 Hz, 4H, H^{B2}), 7.28 (d, J = 1.6 Hz, 2H, H^{A5}), 7.11 (d, / = 8.4 Hz, 4H, H^{B3}), 7.07 (d, / = 9.0 Hz, 16H, H^{D2}), 7.00 (d, / = 8.7 Hz, 8H, H^{C2}), 6.89 (d, / = 8.9 Hz, 8H, H^{C3}), 6.83 (d, / = 9.0 Hz, 16H, H^{D3}), 3.80 (s, 24H, H^{OMe}), 2.76 (d, I = 7.2 Hz, 4H, H^{a}), 2.26 (m, 2H, H^{b}), 0.99 (d, I = 6.6 Hz, 12H, H^c). ¹³C NMR (126 MHz, CDCl₃) δ/ppm: 161.3 (C^{A6}), 156.8 (C^{A2}), 155.7 (C^{D4}), 148.6 (C^{B1, B4}), 144.8 (C^{C4}), 141.4 (C^{D1}), 140.5 (C^{C1}), **13**0.5 (C^{A4}), 127.8 (C^{B2}), 126.2 (C^{D2, C2}), 122.3 (C^{C3}), 120.9 (C^{B3}), 120.4 (C^{A5}), 116.0 (C^{A3}), 114.8 (C^{D3}), 55.6 (C^{OMe}), 47.9 (C^a), 29.2 (C^b), 22.7 (C^c). IR ($\tilde{\nu}$ /cm⁻¹): 3038 (w), 2997 (w), 2952 (w), 2924 (w), 2903 (w), 2866 (w), 2830 (w), 1590 (m), 1499 (s), 1238 (s), 1036 (m), 825 (s), 574 (m), 526 (m). ESI MS (*m/z*): 1665.6 [M+H]⁺, (calc. 1664.8), 832.8 $[M+2H]^{2+}$ (calc. 832.9). UV-VIS (CH₂Cl₂, 1.0 × 10⁻⁵ mol dm⁻³): λ_{max}/nm : 227 (ɛ/dm³ mol⁻¹ cm⁻¹ 96300), 307 (91200), 344 (77800). Found: C, 78.97; H, 6.21; N, 6.79; $C_{110}H_{102}N_8O_8$ · $^1/_2H_2O$ requires C, 78.97; H, 6.21; N, 6.70.

Compound 10

Compound **10** was prepared and purified in the same manner as **8** starting with 4,4'-bis(4-bromophenyl)-6,6'-di-*n*-hexyl-2,2'-bipyridine (182 mg, 0.29 mmol),

4,4'-bis(N,N-bis(4-methoxyphenyl)amino)diphenylamine (394 mg, 0.63 mmol) and NaO^tBu (156 mg, 1.58 mmol) in dry toluene (50 mL). For the preparation of the catalyst suspension one Pd(bda)₂ (16.5 mg, 0.029 mmol, 10 mol%), dry toluene (10 mL) and 1M toluene solution of P^tBu₃ (29.0 µL, 0.029 mmol, 10 mol%) were used. The reaction time at 100°C was 16 h. Compound 10 was isolated as yellow-green solid (399 mg, 0.23 mmol, 81 %). Decomp. > 265 °C. ¹H NMR (500 MHz, CDCl₃) δ /ppm: 8.46 (d, I = 1.7 Hz, 2H, H^{A3}), 7.62 (d, I = 8.8 Hz, 4H, H^{B2}), 7.32 (d, *J* = 1.7 Hz, 2H, H^{A5}), 7.11 (d, *J* = 8.8 Hz, 4H, H^{B3}), 7.07 (d, *J* = 9.0 Hz, 16H, H^{D2}), 7.00 (d, *J* = 8.8 Hz, 8H, H^{C2}), 6.90 (d, *J* = 8.9 Hz, 8H, H^{C3}), 6.83 (d, *J* = 9.0 Hz, 16H, H^{D3}), 3.80 (s, 24H, H^{OMe}), 2.90 (t, J = 7.7 Hz, 4H, H^a), 1.84 (m, 4H, H^b), 1.44 (m, 4H, H^c), 1.35 (m, 8H, H^{d+e}), 0.89 (t, / = 7.1 Hz, 6H, H^f). ¹³C NMR (126 MHz, CDCl₃) δ/ppm: 162.3 (C^{A6}), 156.8 (C^{A2}), 155.7 (C^{D4}), 148.8 (C^{B1, B4}), 144.8 (C^{C4}), 141.3 (C^{D1}), 140.5 (C^{C1}), **13**0.4 (C^{A4}), 127.8 (C^{B2}), 126.2 (C^{D2, C2}), 122.3 (C^{C3}), 120.9 (C^{B3}), 119.6 (C^{A5}), 116.1 (C^{A3}), 114.8 (C^{D3}), 55.6 (C^{OMe}), 38.7 (C^a), 32.0 (C^{d/e}), 30.0 (C^b), 29.3 (C^c), 22.8 (C^{d/e}), 14.3 (C^f). IR ($\tilde{\nu}$ /cm⁻¹): 3036 (w), 2999 (w), 2950 (w), 2928 (w), 2853 (w), 2833 (w), 1591 (m), 1497 (s), 1237 (s), 1036 (m), 824 (s), 572 (m), 523 (m). ESI MS (m/z): 1720.5 [M+H]⁺, (calc. 1720.9), 860.3 [M+2H]²⁺ (calc. 860.95). UV-VIS (CH₂Cl₂, 1.0 × 10⁻⁵ mol dm⁻³): λ_{max}/nm 227 (ϵ/dm^3 mol⁻¹ cm⁻¹ 99300), 308 (96000), 343 (82600). Found: C, 79.06; H, 6.58; N, 6.55; C₁₁₄H₁₁₀N₈O₈·¹/₂H₂O requires C, 79.18; H, 6.47; N, 6.48.

Compound **11**

starting with 4,4'-bis(4-bromophenyl)-6,6'-diphenyl-2,2'-bipyridine (49.1 mg, 79.4 Zmol), 4,4'-bis(N,N-bis(4-methoxyphenyl)amino)diphenylamine (109 mg, 175 Imol) and NaO^tBu (41.9 mg, 436 Imol) in dry toluene (50 mL). For the preparation of the catalyst suspension, Pd(bda)₂ (4.56 mg, 7.94 2mol, 10 mol%), dry toluene (10 mL) and 1M toluene solution of P^tBu₃ (7.94 µL, 7.94 Imol, 10 mol%) were used. The reaction time at 100°C was 16 h. Compound 11 was isolated as yellow-green solid (88.0 mg, 51.6 ℤmol, 65%). Decomp. > 321 °C. ¹H NMR (400 MHz, CDCl₃) δ /ppm: 8.83 (d, J = 1.7 Hz, 2H, H^{A3}), 8.23 (d, J = 7.2 Hz, 4H, H^{E3}), 7.96 (d, J = 1.7 Hz, 2H, H^{A3}), 7.71 (d, J = 8.8 Hz, 4H, H^{B2}), 7.54 (dd, J = 7.4 Hz, 4H, H^{E3}), 7.50 – 7.44 (m, 2H, H^{E4}), 7.16 (d, J = 8.6 Hz, 4H, H^{B3}), 7.08 (d, J = 8.9 Hz, 16H, H^{D2}), 7.03 (d, / = 8.9 Hz, 8H, H^{C2}), 6.92 (d, / = 8.8 Hz, 8H, H^{C3}), 6.84 (d, / = 9.0 Hz, 16H, H^{D3}), 3.80 (s, 24H, H^{OMe}). ¹³C NMR (126 MHz, CDCl₃) δ/ppm: 157.00 (C^{A6}), 156.8 (C^{A2}), 155.7 (C^{D4}), 149.7 (C^{B4}), 149.5 (C^{B1}), 145.0 (C^{C4}), 141.3 (C^{D1}), 140.3 (C^{C1}), 140.0 (C^{E1}), **13**0.4 (C^{A4}), 128.9 (C^{E4}), 128.8 (C^{E3}), 127.9 (C^{B2}), 127.3 (C^{E2}), 126.3 (C^{C2, D2}), 122.2 (C^{C3}), 120.7 (C^{B3}), 117.9 (C^{A5}), 117.3 (C^{A3}), 114.8 (C^{D3}), 55.7 (C^{0Me}). IR ($\tilde{\nu}$ /cm⁻¹): 3037 (w), 2998 (w), 2949 (w), 2926 (w), 2900 (w), 2832 (w), 1591 (m), 1495 (s), 1235 (s), 1034 (m), 822 (s), 575 (m), 522 (m). ESI MS

12

was

(*m/z*): 852.4 [M+2H]²⁺ (calc. 852.7). UV-VIS (CH₂Cl₂, 1.0 × 10⁻⁵ mol dm⁻³): λ_{max}/nm 227 (ϵ / dm³ mol⁻¹ cm⁻¹ **13**3100), 310 (118800), 400 sh (44100). Found: C, 77.15; H, 5.46; N, 6.29; C₁₁₄H₉₄N₈O₈·4H₂O requires C, 77.09; H, 5.79; N, 6.31.

Compound 12

Compound **12** was prepared and purified in the same manner as **8** starting with 4,4'-bis(4-bromophenyl)-6,6'-di-2-naphthyl-2,2'-bipyridine (240 mg, 0.34 mmol), 4,4'-bis(N,N-bis(4-methoxyphenyl)amino)diphenylamine (459 mg, 0.74 mmol) and NaO^tBu (182 mg, 1.84 mmol) in dry toluene (100 mL). For the preparation of the catalyst suspension, Pd(bda)₂ (19.2 mg, 33.5 \square mol, 10 mol%), dry toluene (20 mL) and 1M toluene solution of P^tBu₃ (33.5 µL, 33.5 \square mol, 10 mol%) were used. The reaction time at 100°C was 16 h. Compound **12** was isolated as a yellow solid (432 mg, 0.24 mmol, 72%). Mp. 333 °C. ¹H NMR (500 MHz, CDCl₃) δ /ppm: 8.93 (d, *J* = 1.7 Hz, 2H, H^{A3}), 8.64 (d, *J* = 1.7 Hz, 2H, H^{E1}), 8.43 (dd, *J* = 8.6, 1.8 Hz, 2H, H^{E3}), 8.12 (d, *J* = 1.6 Hz, 2H, H^{A5}), 8.02 (m, 4H, H^{E4+E5/E8}), 7.92 (m, 2H, H^{E5/E8}), 7.77 (d, *J* = 8.7 Hz, 4H, H^{B2}), 7.54 (m, 4H, H^{E6+E7}), 7.18 (d, *J* = 8.8 Hz, 4H, H^{B3}), 7.08 (d, *J* = 9.0 Hz, 16H, H^{D2}), 7.04 (d, *J* = 9.0 Hz, 8H, H^{C2}), 6.92 (d,

J = 9.0 Hz, 8H, H^{C3}), 6.84 (d, *J* = 8.9 Hz, 16H, H^{D3}), 3.80 (s, 24H, H^{OMe}). ¹³C NMR (126 MHz, CDCl₃) δ/ppm: 157.0 (C^{A2+A6}), 155.7 (C^{D4}), 149.9 (C^{B1}), 149.5 (C^{B4}), 145.0 (C^{C4}), 141.3 (C^{D1}), 140.3 (C^{C1}), **13**7.4 (C^{E2}), **13**3.7 (C^{E4a+E8a}), **13**0.4 (C^{A4}), 128.9 (2C^{E4+E5/E8}), 128.0 (C^{B2}), 127.6 (C^{E5/E8}), 126.4 (C^{E1+E6+E7}), 125.2 (C^{E3}), 122.2 (C^{C3}), 120.8 (C^{B3}), 118.1 (C^{A5}), 117.3 (C^{A3}), 114.6 (C^{D3}), 55.7 (C^{OMe}). IR ($\tilde{\nu}$ /cm⁻¹): 3038 (w), 2994 (w), 2947 (w), 2931 (w), 2900 (w), 2832 (w), 1599 (m), 1587 (m), 1495 (s), 1235 (s), 1034 (m), 822 (s), 575 (m), 523 (m), 471 (m). ESI MS (*m/z*): 1804.6 [M+H]⁺, (calc. 1804.8), 902.9 [M+2H]²⁺ (calc. 902.4). UV-VIS (CH₂Cl₂, 1.0 × 10⁻⁵ mol dm⁻³): λ_{max} /nm 228 (ε/dm³ mol⁻¹ cm⁻¹ 165000), 306 (140300), 400 sh (49800). Found: C, 80.26; H, 5.48; N, 6.18; C₁₂₂H₉₈N₈O₈·H₂O requires C, 80.42; H, 5.53; N, 6.15.

Anchored dye	J _{sc} / mA cm ⁻²	V _{oc} / mV	ff / %	η/%	Rel. η / %		
On the day of sealing the cell							
[Cu(13)(1)] ⁺	5.70	513	71.7	2.10	28.7		
[Cu(13)(1)] ⁺	6.00	510	70.3	2.15	29.4		
[Cu(13)(2)] ⁺	4.51	485	68.8	1.50	20.5		
[Cu(13)(2)] ⁺	4.41	482	69.4	1.48	20.2		
[Cu(13)(3)]⁺	3.64	470	68.7	1.18	16.1		
[Cu(13)(3)]⁺	4.22	475	69.6	1.39	19.0		
[Cu(13)(4)]⁺	5.63	521	71.3	2.09	28.6		
[Cu(13)(4)]⁺	5.60	542	71.8	2.18	29.8		
[Cu(13)(5)]⁺	2.76	468	65.8	0.85	11.6		
[Cu(13)(5)]⁺	3.22	468	68.6	1.03	14.1		
[Cu(13)(6)]⁺	4.28	510	68.3	1.49	20.4		
[Cu(13)(6)]⁺	4.29	508	67.0	1.46	19.9		
N719	16.72	641	68.4	7.32	100		
1 day after sealing the cells							
[Cu(13)(1)]⁺	4.85	517	72.1	1.81	24.5		
[Cu(13)(1)]⁺	5.29	513	71.3	1.94	26.3		
[Cu(13)(2)]⁺	4.17	475	68.1	1.35	18.3		
[Cu(13)(2)]⁺	4.42	487	68.8	1.48	20.0		
[Cu(13)(3)]⁺	3.58	462	68.0	1.12	15.2		
[Cu(13)(3)]⁺	3.96	469	69.8	1.30	17.6		
[Cu(13)(4)]⁺	5.53	523	70.8	2.05	27.7		
[Cu(13)(4)]⁺	5.50	542	71.3	2.13	28.8		
[Cu(13)(5)]⁺	2.95	466	67.0	0.92	12.4		
[Cu(13)(5)]⁺	3.30	464	68.7	1.05	14.2		
[Cu(13)(6)]⁺	4.05	506	62.8	1.29	17.5		
[Cu(13)(6)]⁺	4.39	505	66.6	1.48	20.0		
N719	16.61	652	68.2	7.39	100		
	22 days afte	r sealing the cells ^a	-,				
[Cu(13)(1)]⁺	5.27	520	71.1	1.94	24.4		
[Cu(13)(2)]⁺	4.42	516	70.7	1.61	20.3		
[Cu(13)(3)]+	4.18	487	69.6	1.42	17.9		
[Cu(13)(4)]+	5.05	532	70.8	1.90	23.9		
[Cu(13)(5)]+	4.00	485	69.9	1.36	17.1		
[Cu(13)(6)]+	4.10	504	68.0	1.41	17.7		
N719	16.65	671	71.2	7.95	100		

Table S1. DSC performance data (including duplicate masked cells) using anchoring ligand **13** and first-generation ancillary ligands, and acetone in the [CuL₂]+ dipping cycle. Relative efficiencies (last column) are with respect to 100% for standard dye N719 measured under the same conditions. V_{OC} = open circuit voltage, J_{SC} = short circuit current density, ff = fill factor.

^{*a*}For $[Cu(13)(1)]^+$, the second measurements were made after 18 days.

Anchored dye	J _{sc} / mA cm ⁻²	V _{oc} / mV	ff / %	η/%	Rel. η / %		
On the day of sealing the cell							
[Cu(13)(7)]*	6.21	516	67.9	2.18	31.6		
[Cu(13)(7)]*	6.46	515	67.9	2.26	32.8		
[Cu(13)(8)]+	6.24	502	70.2	2.20	31.9		
[Cu(13)(8)] ⁺	6.08	506	70.8	2.18	31.6		
[Cu(13)(9)]*	4.80	479	70.1	1.61	23.3		
[Cu(13)(9)]⁺	5.48	475	69.9	1.82	26.4		
[Cu(13)(10)]+	5.10	491	70.4	1.77	25.7		
[Cu(13)(10)]⁺	5.25	488	70.9	1.81	26.2		
[Cu(13)(11)]⁺	3.80	464	68.6	1.21	17.5		
[Cu(13)(11)]*	4.01	459	70.2	1.29	18.7		
[Cu(13)(12)]+	2.88	437	68.0	0.86	12.5		
[Cu(13)(12)]⁺	3.04	444	69.2	0.93	13.5		
N719	16.52	608	68.8	6.90	100		
1 day af	fter sealing the cells	· • • • • • • • • • • • • • • • • • • •	,		,		
[Cu(13)(7)] ⁺	6.23	536	68.5	2.28			
[Cu(13)(7)]*	6.41	535	67.7	2.32			
[Cu(13)(8)]*	6.25	518	70.1	2.27			
[Cu(13)(8)]*	6.12	521	70.5	2.25			
[Cu(13)(9)]⁺	4.95	489	70.8	1.71			
[Cu(13)(9)]⁺	5.63	490	71.6	1.97			
[Cu(13)(10)]*	5.14	504	70.3	1.82			
[Cu(13)(10)] ⁺	5.19	501	70.6	1.83			
[Cu(13)(11)] ⁺	4.19	479	69.3	1.39			
[Cu(13)(11)] ⁺	4.35	467	70.7	1.44			
[Cu(13)(12)] ⁺	3.27	448	68.2	1.00			
[Cu(13)(12)] ⁺	3.00	449	68.3	0.92			
2 days a	fter sealing the cells	·,,		·			
[Cu(13)(7)]⁺	6.14	533	69.8	2.29			
[Cu(13)(7)]⁺	6.13	534	68.7	2.25			
[Cu(13)(8)]*	5.93	509	70.8	2.14			
[Cu(13)(8)]⁺	6.02	519	71.0	2.22			
[Cu(13)(9)]⁺	4.76	488	71.1	1.65			
[Cu(13)(9)] ⁺	5.60	492	69.9	1.93			
[Cu(13)(10)] ⁺	4.91	500	70.6	1.73			
[Cu(13)(10)]⁺	5.05	499	70.5	1.78			
[Cu(13)(11)] ⁺	4.09	476	69.8	1.36			
[Cu(13)(11)] ⁺	4.34	463	69.7	1.40			
[Cu(13)(12)] ⁺	3.12	439	68.9	0.94			
[Cu(13)(12)]⁺	2.58	430	68.4	0.76			

Table S2. DSC performance data for duplicate masked cells using anchoring ligand **13** and second-generation ancillary ligands, and acetone in the $[CuL_2]^+$ dipping cycle. Relative efficiencies (last column) are with respect to 100% for standard dye N719 measured under the same conditions. V_{OC} = open circuit voltage, J_{SC} = short circuit current density, ff = fill factor.

15 days	after sealing the cells						
[Cu(13)(7)]+	6.00	532	71.0	2.27	28.0		
[Cu(13)(8)] ⁺	5.99	530	71.8	2.28	28.1		
[Cu(13)(9)]⁺	6.16	544	71.5	2.40	29.6		
[Cu(13)(10)]⁺	5.36	518	70.8	1.96	24.2		
[Cu(13)(11)]⁺	4.86	489	71.9	1.71	21.1		
[Cu(13)(12)]⁺	2.67	448	70.4	0.84	10.4		
N719	16.98	674	70.9	8.11	100		
22 days after sealing the cells							
[Cu(13)(7)]+	5.94	536	70.3	2.23			
[Cu(13)(8)]+	5.97	532	71.6	2.27			
[Cu(13)(9)]⁺	6.31	541	71.0	2.42			
[Cu(13)(10)]⁺	5.47	522	70.6	2.02			
[Cu(13)(11)]⁺	4.99	487	71.3	1.73			
[Cu(13)(12)]⁺	2.77	466	70.2	0.91			

Anchored dye	$I_{\rm sc}$ / mA cm ⁻²	$V_{\rm oc}$ / mV	ff / %	n / %	Rel. n / %		
	On the day of s	sealing the cell	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
[Cu(13)(1)]⁺	5.70	490	61.5	1.72	23.2		
[Cu(13)(1)] ⁺	5.47	490	69.4	1.86	25.1		
[Cu(13)(2)] ⁺	4.30	474	70.8	1.44	19.4		
[Cu(13)(2)] ⁺	4.65	475	69.8	1.54	20.8		
[Cu(13)(3)] ⁺	3.94	479	69.6	1.31	17.7		
[Cu(13)(3)] ⁺	4.05	469	67.9	1.29	17.4		
[Cu(13)(4)] ⁺	4.07	491	71.8	1.43	19.3		
[Cu(13)(4)] ⁺	3.02	496	71.9	1.08	14.6		
[Cu(13)(5)]⁺	5.29	496	69.8	1.83	24.7		
[Cu(13)(5)] ⁺	5.35	492	70.4	1.85	25.0		
[Cu(13)(6)] ⁺	2.22	479	68.2	0.73	9.9		
[Cu(13)(6)] ⁺	2.94	485	68.3	0.97	13.1		
N719	16.31	637	71.3	7.41	100		
·····	1 day after se	aling the cells					
[Cu(13)(1)] ⁺	5.09	488	65.8	1.63	21.1		
[Cu(13)(1)]⁺	5.12	492	69.6	1.75	22.7		
[Cu(13)(2)]+	4.08	478	70.6	1.38	17.9		
[Cu(13)(2)]+	4.04	474	69.8	1.34	17.4		
[Cu(13)(3)]+	3.51	483	69.8	1.18	15.3		
[Cu(13)(3)]+	4.16	475	66.9	1.32	17.1		
[Cu(13)(4)]+	3.92	501	70.7	1.39	18.0		
[Cu(13)(4)]+	2.83	498	70.2	0.99	12.8		
[Cu(13)(5)]+	4.98	496	70.6	1.74	22.6		
[Cu(13)(5)]+	5.11	494	70.3	1.78	23.1		
[Cu(13)(6)]+	2.55	503	66.4	0.85	11.0		
[Cu(13)(6)]+	3.09	496	67.7	1.04	13.5		
N719	16.55	663	70.3	7.71	100		
	2 days after se	ealing the cells					
[Cu(13)(1)]+	5.18	495	66.0	1.70	21.4		
[Cu(13)(1)]+	4.98	493	70.0	1.72	21.7		
[Cu(13)(2)]+	4.41	493	70.2	1.52	19.1		
[Cu(13)(2)]+	4.27	485	69.3	1.43	18.0		
[Cu(13)(3)]+	3.55	488	69.0	1.20	15.1		
[Cu(13)(3)]+	4.07	475	67.5	1.30	16.4		
[Cu(13)(4)]+	3.78	500	70.6	1.34	16.9		
[Cu(13)(4)]+	2.92	515	70.3	1.06	13.4		
[Cu(13)(5)]+	5.02	520	70.4	1.84	23.2		
[Cu(13)(5)]+	5.36	508	70.5	1.92	24.2		
[Cu(13)(6)]+	2.68	514	66.9	0.92	11.6		
[Cu(13)(6)]+	2.93	500	67.7	0.99	12.5		
N719	16.47	680	70.9	7.94	100		
8 days after sealing the cells							
[Cu(13)(1)]+ 5.21 505 66.8 1.76 21.6							
[Cu(13)(1)]+	5.13	502	70.5	1.82	22.3		
[Cu(13)(2)]+	4.40	502	71.6	1.58	19.4		
[Cu(13)(2)]+	4.27	508	70.6	1.53	18.8		
[Cu(13)(3)]+	3.87	510	70.0	1.38	16.9		

Table S3. DSC performance data for duplicate masked cells using anchoring ligand **13** and first-generation ancillary ligands, and CH_2Cl_2 in the [CuL₂]⁺ dipping cycle. Relative efficiencies (last column) are with respect to 100% for standard dye N719 measured under the same conditions. V_{OC} = open circuit voltage, J_{SC} = short circuit current density, ff = fill factor.

[Cu(13)(3)]+	4.03	482	68.8	1.34	16.4
[Cu(13)(4)]+	3.79	510	72.3	1.40	17.2
[Cu(13)(4)]+	3.15	546	72.2	1.24	15.2
[Cu(13)(5)]+	5.43	545	65.9	1.95	23.9
[Cu(13)(5)]+	5.49	540	71.8	2.13	26.1
[Cu(13)(6)]+	2.96	540	66.6	1.06	13.0
[Cu(13)(6)]+	2.95	503	69.6	1.03	12.6
N719	16.51	692	71.5	8.16	100
	15 days after	sealing the cells			
[Cu(13)(1)]+	4.99	498	67.1	1.67	
[Cu(13)(1)]+	5.17	508	70.1	1.84	
[Cu(13)(2)]+	4.41	503	71.0	1.57	
[Cu(13)(2)]+	4.30	518	69.9	1.55	
[Cu(13)(3)]+	3.97	525	70.2	1.46	
[Cu(13)(3)]+	4.20	498	67.4	1.41	
[Cu(13)(4)]+	3.77	526	72.7	1.44	
[Cu(13)(4)]+	3.12	542	71.5	1.21	
[Cu(13)(5)]+	5.59	550	65.7	2.02	
[Cu(13)(5)]+	5.54	545	71.8	2.17	
[Cu(13)(6)]+	2.87	537	67.3	1.04	
[Cu(13)(6)]+	2.82	498	70.7	0.99	
	24 days afte	er sealing cells			
[Cu(13)(1)]+	4.67	485	68.0	1.54	19.4
[Cu(13)(1)]+	4.86	494	69.4	1.67	21.1
[Cu(13)(2)]+	4.16	494	71.1	1.46	18.4
[Cu(13)(2)]+	4.51	518	67.6	1.58	19.9
[Cu(13)(3)]+	4.20	525	67.6	1.49	18.8
[Cu(13)(3)]+	4.72	508	62.6	1.50	18.9
[Cu(13)(4)]+	3.94	532	71.6	1.50	18.9
[Cu(13)(4)]+	3.19	539	70.7	1.22	15.4
[Cu(13)(5)]+	5.32	541	68.0	1.95	24.6
[Cu(13)(5)]+	5.45	537	70.5	2.06	26.0
[Cu(13)(6)]+	2.93	535	66.2	1.04	13.1
[Cu(13)(6)]+	3.19	521	69.1	1.15	14.5
N719	15.86	698	71.6	7.92	100

Anchored dye	$J_{\rm sc}$ / mA cm ⁻²	V _{oc} / mV	ff / %	η/%	Rel. ŋ / %	
On day of sealing the cells						
[Cu(13)(7)]⁺	4.97	491	61.1	1.49	20.1	
[Cu(13)(7)]⁺	4.32	509	68.1	1.50	20.3	
[Cu(13)(8)]⁺	4.08	469	67.9	1.30	17.6	
[Cu(13)(8)]⁺	3.86	467	69.7	1.26	17.0	
[Cu(13)(9)]⁺	2.50	426	66.4	0.71	9.6	
[Cu(13)(9)]⁺	2.60	428	65.3	0.73	9.9	
[Cu(13)(10)] ⁺	2.73	459	68.5	0.86	11.6	
[Cu(13)(10)] ⁺	2.65	455	66.3	0.80	10.8	
[Cu(13)(11)]⁺	1.62	414	65.5	0.44	5.9	
[Cu(13)(11)]⁺	1.78	418	67.2	0.50	6.8	
[Cu(13)(12)]⁺	1.29	413	63.3	0.34	4.6	
[Cu(13)(12)] ⁺	1.63	411	61.1	0.41	5.5	
N719	16.44	647	69.5	7.40	100	
	1 day af	ter sealing cells				
[Cu(13)(7)]⁺	5.07	532	68.3	1.84	22.7	
[Cu(13)(7)]⁺	4.27	532	69.6	1.58	19.5	
[Cu(13)(8)]⁺	4.64	505	69.6	1.63	20.1	
[Cu(13)(8)] ⁺	4.35	495	70.8	1.52	18.7	
[Cu(13)(9)]⁺	3.25	454	69.2	1.02	12.6	
[Cu(13)(9)]⁺	3.10	456	68.6	0.97	12.1	
[Cu(13)(10)]*	3.09	479	69.7	1.03	12.7	
[Cu(13)(10)] ⁺	3.12	485	66.5	1.01	12.5	
[Cu(13)(11)]+	2.08	449	69.1	0.64	7.9	
[Cu(13)(11)]⁺	2.31	440	69.0	0.70	8.6	
[Cu(13)(12)]⁺	1.57	436	67.6	0.46	5.7	
[Cu(13)(12)]+	2.08	431	46.7	0.42	5.2	
N719	17.02	681	70.0	8.11	100	
	2 days af	ter sealing cells				
[Cu(13)(7)]⁺	4.96	529	69.3	1.82	23.2	
[Cu(13)(7)]⁺	4.24	531	69.9	1.57	20.0	
[Cu(13)(8)]+	4.42	496	69.2	1.52	19.3	
[Cu(13)(8)]⁺	4.22	494	71.0	1.48	18.8	
[Cu(13)(9)]*	3.16	455	69.6	1.00	12.7	
[Cu(13)(9)]⁺	3.04	458	68.1	0.95	12.1	
[Cu(13)(10)]⁺	3.23	490	69.6	1.10	14.0	
[Cu(13)(10)]⁺	3.17	488	66.9	1.03	13.1	
[Cu(13)(11)]⁺	2.17	451	68.9	0.67	8.5	
[Cu(13)(11)]⁺	2.30	438	68.7	0.69	8.8	
[Cu(13)(12)]⁺	1.65	440	67.9	0.49	6.2	
[Cu(13)(12)] ⁺	2.30	432	45.2	0.45	5.7	
N719	16.59	673	70.4	7.86	100	
	8 days af	ter sealing cells	,			
[Cu(13)(7)]+	4.92	541	69.7	1.85		
[Cu(13)(7)]+	3.89	565	69.6	1.53		
[Cu(13)(8)] ⁺	4.47	505	70.3	1.59		
[Cu(13)(8)] ⁺	4.26	522	71.0	1.58		

Table S4. DSC performance data for duplicate masked cells using anchoring ligand **13** and second-generation ancillary ligands, and CH_2Cl_2 in the $[CuL_2]^+$ dipping cycle. Relative efficiencies (last column) are with respect to 100% for standard dye N719 measured under the same conditions. V_{OC} = open circuit voltage, J_{SC} = short circuit current density, ff = fill factor.

[Cu(13)(9)] ⁺	3.29	467	70.6	1.09	
[Cu(13)(9)]⁺	3.26	489	69.8	1.11	
[Cu(13)(10)] ⁺	3.39	514	69.8	1.22	
[Cu(13)(10)] ⁺	3.20	493	67.4	1.06	
[Cu(13)(11)] ⁺	2.20	454	69.6	0.69	
[Cu(13)(11)] ⁺	2.50	446	69.4	0.77	
[Cu(13)(12)] ⁺	1.66	440	68.4	0.50	
[Cu(13)(12)] ⁺	2.54	444	44.4	0.50	
	15 days aft	er sealing the cel	lls		
[Cu(13)(7)]⁺	5.09	551	69.6	1.95	25.3
[Cu(13)(7)]⁺	3.94	568	69.0	1.54	20.0
[Cu(13)(8)]+	4.49	509	70.3	1.61	20.9
[Cu(13)(8)]⁺	4.69	537	70.3	1.77	23.0
[Cu(13)(9)]⁺	3.44	471	70.4	1.14	14.8
[Cu(13)(9)]⁺	3.59	497	68.9	1.23	16.0
[Cu(13)(10)]+	3.58	523	69.1	1.29	16.7
[Cu(13)(10)]+	3.40	499	66.7	1.13	14.7
[Cu(13)(11)]⁺	2.34	459	69.4	0.75	9.7
[Cu(13)(11)] ⁺	2.68	449	68.7	0.83	10.8
[Cu(13)(12)] ⁺	1.87	459	69.8	0.60	7.8
[Cu(13)(12)]+	2.68	440	42.8	0.51	6.6
N719	16.02	691	69.6	7.71	100
ļ	22 days aft	er sealing the cel	lls		
[Cu(13)(7)]⁺	5.17	561	69.4	2.01	25.3
[Cu(13)(7)]⁺	4.03	573	68.1	1.57	19.8
[Cu(13)(8)]⁺	4.54	512	70.0	1.63	20.5
[Cu(13)(8)]⁺	4.77	536	69.2	1.77	22.3
[Cu(13)(9)]⁺	3.54	469	70.5	1.17	14.7
[Cu(13)(9)]⁺	3.43	484	70.1	1.16	14.6
[Cu(13)(10)] ⁺	3.71	522	68.1	1.32	16.6
[Cu(13)(10)] ⁺	3.48	491	66.2	1.13	14.2
[Cu(13)(11)]+	2.43	462	69.3	0.78	9.8
[Cu(13)(11)] ⁺	2.83	449	69.1	0.88	11.1
[Cu(13)(12)] ⁺	2.03	463	69.2	0.65	8.2
[Cu(13)(12)]+	3.01	449	31.9	0.43	5.4
N719	16.16	709	69.3	7.94	100

Fig. S1. J–V curves for dyes $[Cu(13)(2)]^*$ and $[Cu(13)(8)]^*$ (n-butyl substituents) on day of sealing the DSC (day 0) and after 22 days showing enhancement of J_{sc} with second-generation ligand. Dye assembly was from an acetone solution of the homolpetic complex.

Fig. S2. J–V curves for dyes [Cu(13)(5)]⁺ and [Cu(13)(11)]⁺ (phenyl substituents) on day of sealing the DSC (day 0) and after 22 days. Dye assembly was from an acetone solution of the homolpetic complex.

Fig. S3. J–V curves for dyes [Cu(13)(4)]⁺ and [Cu(13)(10)]⁺ (n-hexyl substituents) on day of sealing the DSC (day 0) and after 22 days. Dye assembly was from an acetone solution of the homolpetic complex.

Fig. S4. EQE spectra of the DSCs (22 days after sealing) with dyes containing ancillary ligands 1–6. Dye assembly was from an acetone solution of the homolpetic complex.

Fig. S5. EQE spectra of the DSCs (22 days after sealing) with dyes containing ancillary ligands **7–12**. Dye assembly was from an acetone solution of the homolpetic complex.

Fig. S6 J–V curves for dyes $[Cu(13)(L)]^+$ with L = 1–6 on day of sealing the DSCs (day 0) and after 15 days showing improvement of V_{oc} . CH_2Cl_2 was used in the $[CuL_2]^+$ dipping cycle.

Fig. S7 J–V curves for dyes $[Cu(13)(L)]^+$ with L = 7–12 on day of sealing the DSCs (day 0) and after 22 days showing improvement both in V_{oc} and J_{sc} with aging. CH₂Cl₂ was used in the $[CuL_2]^+$ dipping cycle.

References

- B. Bozic-Weber, S. Brauchli, E. C. Constable, S. O. Fürer, C. E. Housecroft and I. A. Wright, *Phys. Chem. Chem. Phys.*, 2013, 15, 4500.
- ² B. Bozic-Weber, S. Y. Brauchli, E. C. Constable, S. O. Fürer, C. E. Housecroft, F. J. Malzner, I. A. Wright and J. A. Zampese, *Dalton Trans.*, 2013, 42, 12293.