Electronic Supplementary Information

Vapour-based processing of hole-conductor-free CH₃NH₃PbI₃ perovskite/C₆₀ fullerene planar solar cells

Hao Hu,^{*a,c*} Dong Wang,^{*a,c*} Yuanyuan Zhou,^{*b*} Jiliang Zhang,^{*d*} Siliu Lv,^{*a*} Shuping Pang,^{*a,**} Xiao Chen,^{*a*} Zhihong Liu,^{*a*} Nitin P. Padture,^{*b*} Guanglei Cui ^{*a,**}

 ^a Qingdao Key Lab of Solar Energy Utilization and Energy Storage Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China
E-mail: pangsp@qibebt.ac.cn; cuigl@qibebt.ac.cn
^b School of Engineering, Brown University, Providence, RI 02912, USA
^c University of Chinese Academy of Sciences, Beijing 100049, P. R. China
^d Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR

Experimental Procedure

Synthesis and Solar Cells Fabrication

CH₃NH₃I (or *MA*I) was prepared using the approach described in the literature ^[3]. Typically, 18 mL methylamine (40% in water, Sinopharm, China) and 30 mL of hydroiodic acid (45 wt% in water, Sinopharm, China) were mixed and reacted at 0 °C for 2 h while stirring. After rotary evaporation, the CH₃NH₃I powders was collected and washed three times and dried in a vacuum oven.

To prepare the *MA*PbI₃ thin film on a patterned indium tin oxide (ITO) coated glass substrates, the substrates were placed above the vapour sources with the ITO side facing down and 100 mg PbI₂ (Aladdin, China) was placed in a tungsten crucible. The distance between the crucible and the substrates was fixed at 20 cm. Once the pressure in the chamber was pumped down to below 5×10^{-3} Torr, the crucible was heated using a current of ~45 A for 15 min to obtain a PbI₂ thin film on the ITO-coated glass substrates. Subsequently, 40 mg of the *MA*I was placed in another tungsten crucible and evaporated (~38 A, 15 min) to convert the PbI₂ into *MA*PbI₃ film *in situ*. The as-deposited film was then taken out and annealing at 100 °C for 30 min in the air. To complete the *MA*PbI₃-C₆₀ bilayer solar cell, 10 nm C₆₀ layer and 50 nm Ag layer were successively evaporated onto the as-prepared *MA*PbI₃ film.

Characterization

X-ray diffraction (XRD) patterns from the PbI₂ and the $MAbI_3$ films were obtained using a microdiffractometer (D8-Advance, Bruker, Karlsruhe, Germany) with Cu K_a radiation (λ =1.5406 Å) at 0.02° per step under operation condition of 30 kV and 40 mA. The structural analysis was conducted using the Topas 4.2 program. A scanning electron microscope (SEM; S-4800, Hitachi, Japan) was used to investigate the cross-sectional structure of the whole solar cell, and the surface morphologies of the PbI₂ and the *MA*bI₃ films. The optical absorbance spectra of the *MA*PbI₃ perovskite film were measured using a UV-*vis*/NIR spectrophotometer (U-4100, Hitachi, Japan).

Solar Cells Testing

The *J-V* responses of the solar cells (unmasked) were measured using an analyzer (2400 Series Sourcemeter, Keithley, Cleveland, OH) under simulated AM 1.5G sunlight at 100 mW/cm² irradiation (Oriel Sol3A Class AAA Solar Simulator, Newport Corp., Irvine, CA). The exact light intensity was calibrated using the Newport Calibrated Reference Cell and Meter with KG3 window (Model 91150-KG3, Newport Corp., Irvine, CA). The active area of the solar cells was typically 0.09 cm², which is defined by the overlapping area of the ITO-coated glass and the Ag electrodes. There might be some overestimatation of PCE due to the edge effects. [1, 2]

Figure S1. High-magnification SEM image (top view) of the vapor-deposited PbI₂ film.

	Voc	Jsc	FF	Efficiency
	0.85	12.11	0.48	1 95
1	0.85	12.11	0.40	4.95
2	0.77	13.94	0.47	5.1
3	0.7	14.31	0.47	4.69
4	0.74	14.09	0.45	4.63
5	0.87	12.5	0.44	4.78
6	0.81	11.06	0.46	4.13
7	0.79	13.65	0.48	5.24
8	0.82	12.95	0.47	5.03
9	0.78	13.94	0.47	5.1
10	0.8	13.61	0.5	5.44

Table S1. Performance parameter results from the testing of ten different $MAPbI_3$ perovskite/C₆₀fullerene solar cells.

References

1 H. S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N.-G. Park and J. Bisquert, *Nature Comm.* 2013, 4, 2242.

2 Q Wang, Y. C. Shao, Q. F. Dong, Z. G. Xiao, Y. B. Yuan, J. S. Huang, *Energy Environ. Sci.* 2014, (in press) DOI: 10.1039/C4EE00233D