Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

## **Electronic Supplementary Information:**

Table S1. Yields of IC1113 as a function of amounts of added CP1113 in 25mL saturated aqueous solutions of β-CD (0.16 mol L<sup>-1</sup>)

| Items                                                             | Ex.1    | Ex.2    | Ex.3    | Ex.4    | Ex.5    | Ex.6    | Ex. 7   | Ex.8    |
|-------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Mass of Added CP1113 (g)                                          | 0.0000  | 0.1000  | 0.2000  | 0.3000  | 0.4000  | 0.5000  | 0.6000  | 0.7000  |
| Amount of added CP1113 (mmol)                                     | 0.0000  | 0.04153 | 0.08306 | 0.1246  | 0.1661  | 0.2076  | 0.2492  | 0.2907  |
| Concentration of added CP1113 (mmol L-1) a                        | 0.0000  | 1.6612  | 3.3224  | 4.9840  | 6.6440  | 8.3040  | 9.9680  | 11.6280 |
| Theoretical precipitated β-CD (g) b                               | 4.1250  | 4.1250  | 4.1250  | 4.1250  | 4.1250  | 4.1250  | 4.1250  | 4.1250  |
| Actually mass of β-CD residue (g) <sup>c</sup>                    | 4.1150  | 4.0510  | 3.7331  | 3.4691  | 2.7885  | 2.2192  | 2.2522  | 2.2275  |
| Theoretically calculated amount of $\beta$ -CD in ICs $(g)^d$     | 0.0200  | 0.0740  | 0.3919  | 0.6559  | 1.3365  | 1.9058  | 1.8728  | 1.8975  |
| Theoretical calculated amount of β-CD in ICs (mmol)               | 0.01762 | 0.06520 | 0.3453  | 0.5779  | 1.1178  | 1.6791  | 1.6500  | 1.6718  |
| Theoretical calculated amount of ICs (g) e                        | 0.0200  | 0.1740  | 0.5919  | 0.9559  | 1.7365  | 2.4058  | 2.4728  | 2.5975  |
| Actual amount of ICs (g)                                          | 0.0000  | 0.1515  | 0.5619  | 0.9084  | 1.7015  | 2.4683  | 2.4228  | 2.5300  |
| Actual yields of ICs (%) f                                        | 0.4848  | 1.7939  | 9.5006  | 15.9006 | 32.4000 | 46.2012 | 45.4012 | 46.0000 |
| Errors of yields of ICs (%) g                                     | -0.4848 | -0.5455 | -0.7273 | -1.1515 | -0.8485 | +1.5152 | -1.2121 | -1.6364 |
| The molar stoichiometry ratio between $\beta$ -CD and CP1113 $^h$ | _       | 1.5699  | 4.1572  | 4.6380  | 6.7297  | 8.0882  | 6.6212  | 5.7909  |

**a**:Concentration of added CP1113 (mmol  $L^{-1}$ ) was calculated in accordance with a volume-fixed 25 mL  $\beta$ -CD solution;

 $<sup>\</sup>boldsymbol{b}$ : Theoretical precipitated  $\beta$ -CD (g) was calculated to be constant value according to the solubility differences between 80°C to 20°C in a volume-fixed 25 mL solution;

*c*: Actually mass of  $\beta$ -CD residue (g) was separated from the mother liquor or in crystal state at the flask bottom without complexation;

*d*: Theoretically calculated amount of  $\beta$ -CD in ICs (g) was calculated from [Theoretical precipitated  $\beta$ -CD] subtracting [Actually mass of  $\beta$ -CD residue];

*e*: Theoretical calculated amount of ICs (g) was calculated from [Theoretically calculated amount of  $\beta$ -CD in ICs] + [Mass of Added CP1113];

f: Actual yields of ICs (%) was calculated from [Theoretical calculated amount of  $\beta$ -CD in ICs]/[Theoretical precipitated  $\beta$ -CD];

g: Errors of yields of ICs (%) was calculated from [(Theoretical calculated amount of ICs)-(Actual amount of ICs)]/[Theoretical precipitated  $\beta$ -CD];

**h:** The molar stoichiometry ratio between  $\beta$ -CD and CP1113 was calculated from [Theoretical calculated amount of  $\beta$ -CD in ICs]/[Amount of added CP1113].

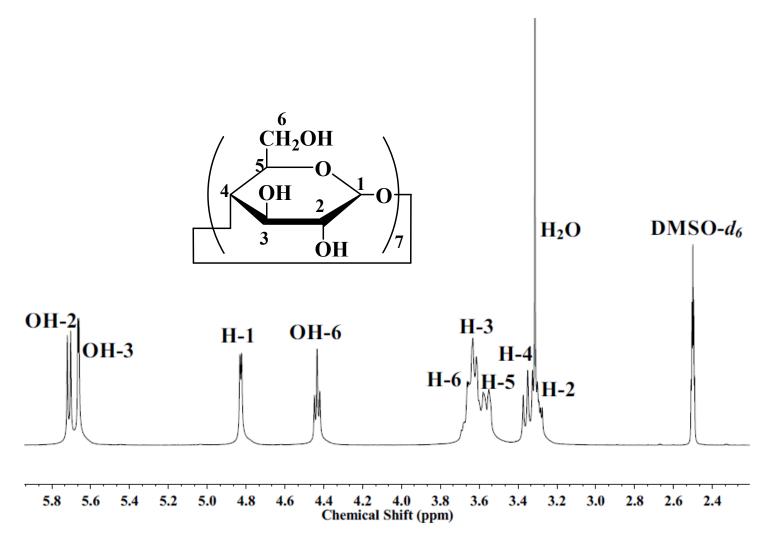



Fig.S1  $^{1}$ H-NMR spectrum of  $\beta$ -CD in DMSO-d<sub>6</sub> at 298.15K.

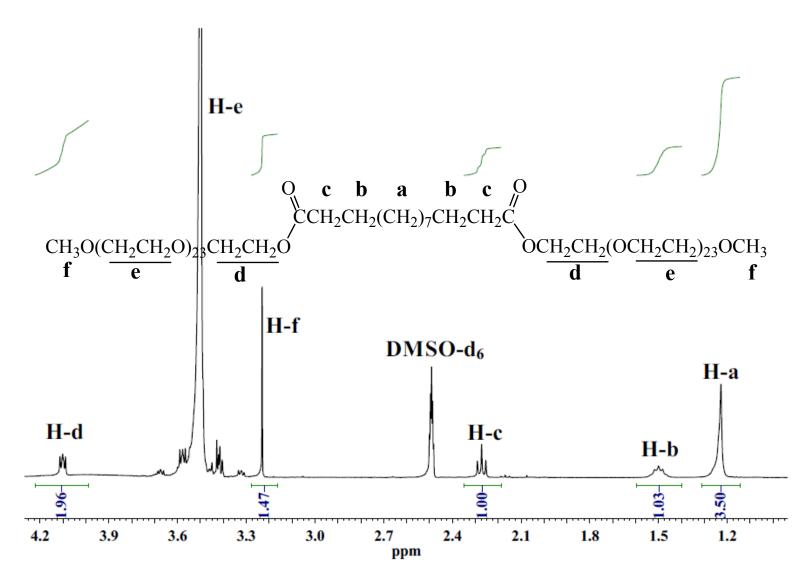



Fig.S2 <sup>1</sup>H-NMR spectrum of CP1113 in DMSO-d<sub>6</sub> at 298.15K.

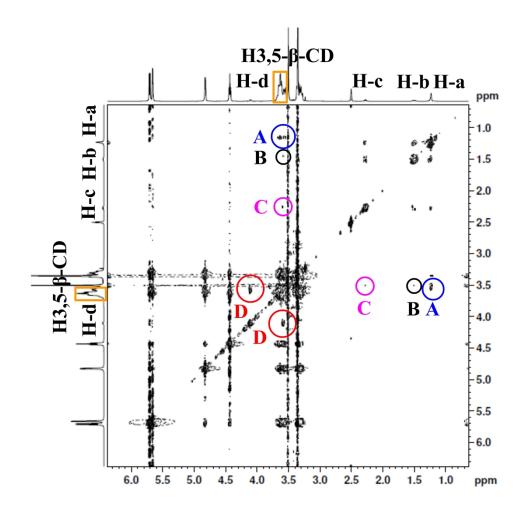



Fig.S3 2D ROSEY spectrum of IC1113 partially dissolved in DMSO-d<sub>6</sub> at 298.15K with 5 min of ultrasonication (four kinds of cross peaks with different strength are assigned to the interactions between H3, H5 of β-CD and : A. H-a, B. H-b, C. H-c, D. H-d of CP1113)

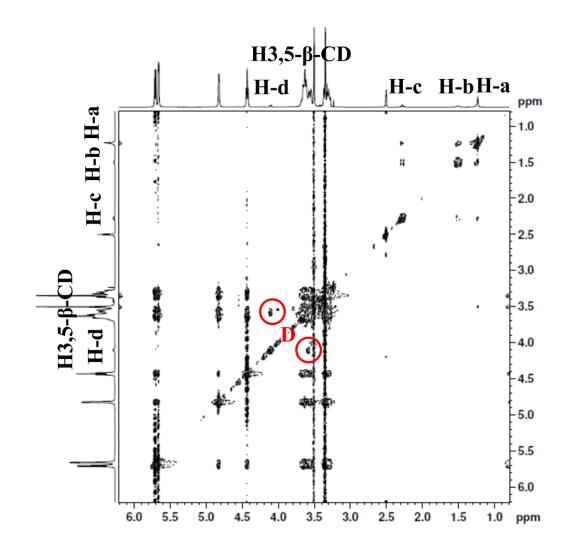



Fig.S4 2D ROSEY spectrum of IC1113 fully dissolved in DMSO-d<sub>6</sub> at 298.15K with 30 min of ultrasonication (two weak cross peaks in red circles are assigned to interaction of H3, H5 of β-CD and H-d of CP1113, the underlined part in CH<sub>3</sub>(OCH<sub>2</sub>CH<sub>2</sub>)<sub>23</sub>O <u>CH<sub>2</sub>CH<sub>2</sub></u>O-CO(CH<sub>2</sub>)<sub>11</sub>CO-O<u>CH<sub>2</sub>CH<sub>2</sub>O(CH<sub>2</sub>CH<sub>2</sub>O)<sub>23</sub>CH<sub>3</sub>)</u>

Table S2. Comparison of experimental results between this work and several previous relevant literatures

| Systems                                                                                  | Molecular structure of guest polymers                                                                  | Molar ratio of β-CDs to the included polymers (or copolymers)                                  | Molar ratio of β-CD to non-PEG polymer segments | Number of EG<br>segments per β-CD                  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|--|
| IC1113 in this work                                                                      | H <sub>3</sub> COEG <sub>~24</sub> (CH <sub>2</sub> ) <sub>11</sub> EG <sub>~24</sub> OCH <sub>3</sub> | ~7.8:1                                                                                         | ~2:1 (to ME segments) <sup>e</sup>              | ~8.28 f                                            |  |
| IC between β-CD and PEG <sup>a</sup>                                                     | EG <sub>n</sub> , where n was not given                                                                | Not given                                                                                      | _                                               | 3                                                  |  |
| IC between β-CD and PPG b                                                                | PG <sub>~17</sub>                                                                                      | Not given                                                                                      | 1:2 (with PG segments) b                        | _                                                  |  |
| Polypseudorotaxane from β-CD and PPG <sup>c</sup>                                        | H <sub>2</sub> N-PG <sub>∼34</sub> -NH <sub>2</sub>                                                    | ~13:1                                                                                          | 1:2.6 (with PG segments) <sup>c</sup>           | _                                                  |  |
| Polypseudorotaxane prepared from β-CD and PEG- <i>b</i> -PPG- <i>b</i> -PEG <sup>d</sup> | residue-EG <sub>~22</sub> PG <sub>~39</sub> EG <sub>~22</sub> -residue                                 | ~17:1 (experimental) ~19:1, (theoretically calculated value according to literature <i>b</i> ) | 1:2 (with PG segments) b                        | Cannot be determined even if there is <sup>g</sup> |  |
| Polyrotaxane prepared from β-CD and PEG- <i>b</i> -PPG- <i>b</i> -PEG <sup>d</sup>       | stopper-EG <sub>~22</sub> PG <sub>~39</sub> EG <sub>~22</sub> -stopper                                 | ~7:1 (experimental) ~19:1 (theoretically calculated value according to literature <i>b</i> )   | 1:2 (with PG segments) b                        | Cannot be determined even if there is <sup>g</sup> |  |

- a: K. A. Udachin, L.D. Wilson and J.A. Ripmeester, J. Am. Chem. Soc, 2000, 122, 12375-12376.
- **b**: A. Harada, M. Okada, J. Li and M. Kamachi, *Macromolecules*, 1995, **28**, 8406-8411.
- c: S. Liu, J. Cai, L. Ren, L. Wang and Y.J. Wang, RSC Adv., 2014, 4, 18608–18611
- d: H. Fujita, T. Ooya and N. Yui, Macromolecules, 1999, 32, 2534-2541.
- e: J. G. Gao, Y. J. Ding, H. W. Chen, Q. P. Song and Q. J.Zhang, Chin.J. Chem. Phys, 2008, 21, 387-392.
- *f*: Number of EG segments per  $\beta$ -CD was calculated from [EG segments in one CP1113 mainchain]/[(Molar ratio of  $\beta$ -CDs to the included polymers)- (Molar ratio of  $\beta$ -CD to non-PEG polymer segments)], that is 48/(7.8-2) accordingly.
- g:According to the theoretically molar ratio of β-CD to PG segments of 1:2, the molar ratio of EG segments to β-CD cannot be calculated because the central PG segments (ca. 39) needed more β-CDs (ca. 19) than the experimental numbers (ca. 17 or 7) of the accommodated β-CDs, so it is not sure that β-CDs reside on the PEG segments or not.

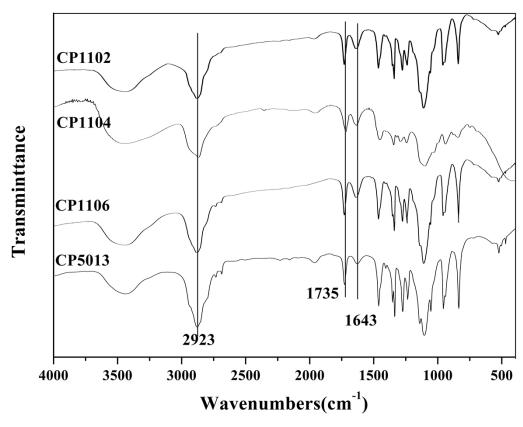
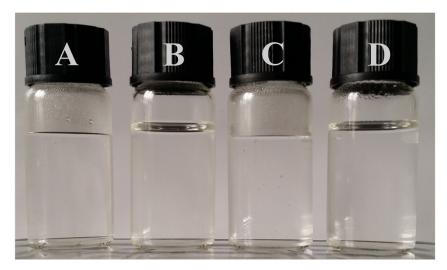




Fig.S5 FTIR spectra of analogous triblock polymers prepared from MePEG and diacids (CP1102: MePEG1100 and oxalic acid; CP1104: MePEG1100 and succinic acid; CP1106: MePEG1100 and adipic acid; CP5013: MePEG5000 and DA13)



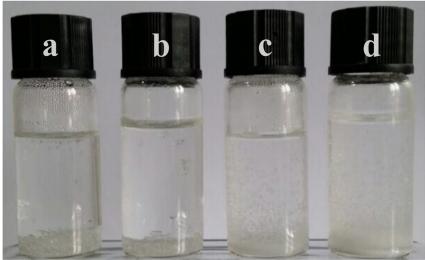



Fig.S6 Optical graphs of the beginning (80  $^{\circ}$ C, upper) and ending (20  $^{\circ}$ C, lower) states for four triblock polymers with  $\beta$ -CD (A and a: CP1102; B and b: CP1104; C and c: CP1106; D and d: CP5013).