Supplementary information

HPLC coupled with spectrophotometer as a reliable setup for the study of absorption properties of imidazolium ionic liquids on the example of bmimBF₄

N. Gutowska^a, A. Maciejewski^{ab}

a Photochemistry and Spectroscopy Laboratory, Faculty of Chemistry, Adam Mickiewicz University, ul. Umultowska 89b, 61-614 Poznań, Poland E-mail: <u>nataliag@amu.edu.pl</u>, <u>iwonam@amu.edu.pl</u>

b Center for Ultrafast Laser Spectroscopy, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań, Poland

Fig. S1. Absorption spectrum of bmimBF₄ sample Z in a mixture of 40% ACN and 60% H2O v/v (c=0.53 M; l=0.001 cm).

Fig. S2. Absorption chromatograms measured for λ =232–238 nm. The peak observed for each wavelength corresponds to the aggregates formed by bmimBF₄ (measured for sample Z). Inset: normalised chromatograms showing that the absorption spectra measured for this range of t_R are not influenced by absorption of impurities.

Fig. S3. Absorption chromatograms for λ =232 nm of three samples bmimBF4 purchased from different producers and labelled X, Y, Z, obtained in HPLC-abs system. Differences in intensity of the absorbance between these three samples can be observed.

Fig. S4. Normalised absorption spectra of impurities present in sample Z of BF_4 for t_R corresponding to the peak of $t_R^{max}=7.95$ min shown in Fig. 2b.

Fig. S5. Normalised absorption spectra of complexes formed by bmimBF_4 with water molecules, measured for retention times given for sample Z. Intensity of the long-wavelength band increases with increasing t_R .