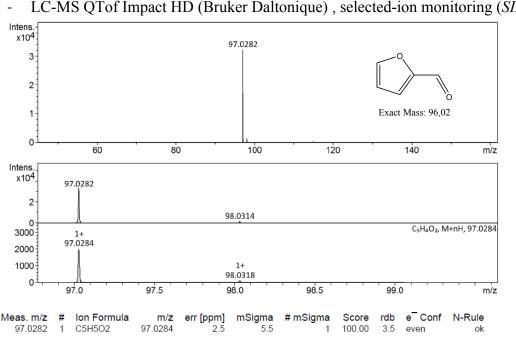
Conversion of wheat straw to furfural and levulinic acid in a concentrated aqueous solution of betaïne hydrochloride

Fei Liu^a, Florent Boissou^{a,b}, Anaïs Vignault^a, Laurent Lemée^a, Sinisa Marinkovic^b, Boris

Estrine^b, Karine De Oliveira Vigier^{*,a} and François Jérôme^a

^a IC2MP, Institute of chemistry UMR CNRS 7285, Université de Poitiers, ENSIP, 1 rue


Marcel Doré 86022 Poitiers

^b Green chemistry ARD, Agro-Industrie Recherches et Développement F-51110 POMACLE,

France; E-mail: b.estrine@a-r-d.fr

Corresponding author : Dr. Karine De Oliveira Vigier, E-mail: karine.vigier@univ-poitiers.fr

Analysis of furfural after its extraction with diethyl ether when wheat straw was converted at 180°C for 1 hour under microwave irradiations (250 W): Two technics were employed LC-MS and GC-MS analyses.

LC-MS QTof Impact HD (Bruker Daltonique), selected-ion monitoring (SIM)

Fig. S1 LC-MC analysis of furfural after its extraction

- GC-MS

GC/Mass Q-TOF "exact mass"

GC: 7890A Agilent, column HP 5 ms 30X0.25X0.25

Mass: 7200 Agilent

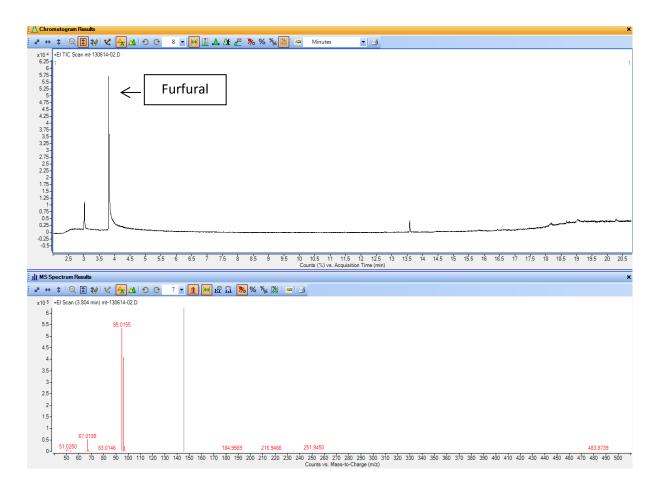
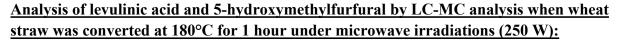
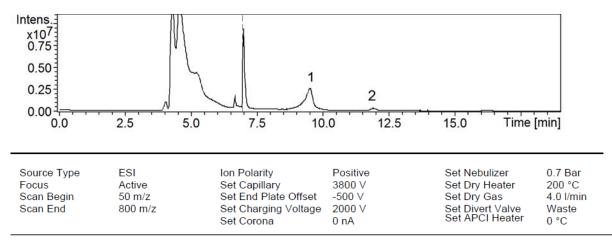




Fig. S2 GC-MC analysis of furfural after its extraction

Levulinic acid (1):

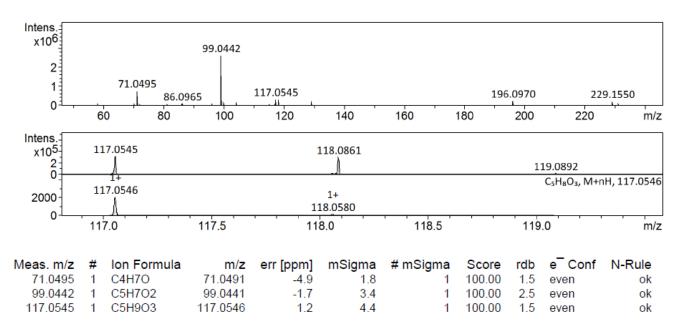


Fig. S3 LC-MC analysis of levulinic acid

5-Hydroxyméthylfurfural (2):

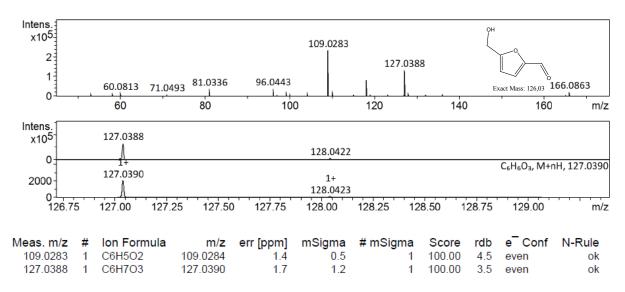
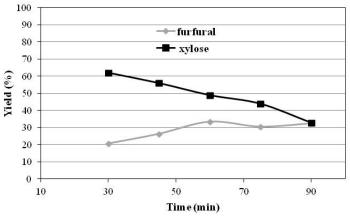



Fig. S4 LC-MC analysis of 5-hydroxyméthylfurfural

Fig. S5 Tandem hydrolysis/dehydration of xylan originated from beechwooch in the presence of an aqueous solution BHC. Xylan and BHC content of 10 wt% and 20 wt% respectively, 150°C

¹H NMR spectra : ¹HNMR are recorded on a 400 MHz Bruker Advance DPX spectrometer using DMSO as solvent.

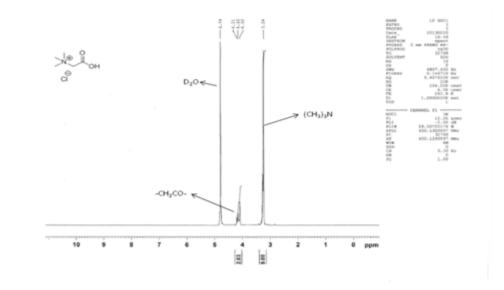


Fig. S6 ¹H NMR spectra of BHC recovered after the 6th cycle of recycling

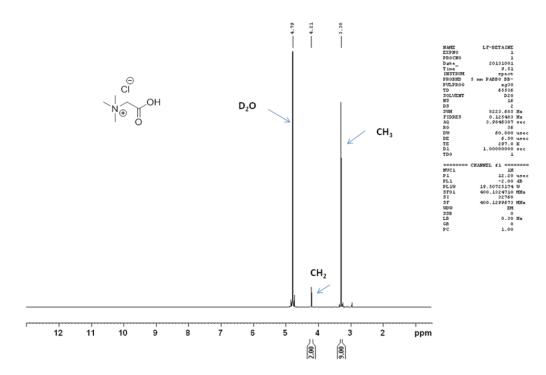


Fig. S7: ¹H NMR spectra of BHC recovered after conversion of wheat straw

Table S1 Hydrolysis of microcrystalline cellulose (AVICEL PH 200) in the presence of BHC^a

Cellulose (wt%)	Yield to levulinic acid(%)
1,3	64
1,3 ^b	65
1,3°	75
5	60
10	60
20	53
30	48

^{*a*} BHC, 40wt%, MW 250 W, 10 mL of water, 200°C, t = 1 h, ^{*b*} T = 180°C t = 2 h, ^{*c*} cotton, T = 180°C, t = 2 h

Fig. S8: Picture of the reactor used